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a b s t r a c t

In this paper, a robust numerical scheme is presented for the reaction diffusion and wave
propagation problems. The present method is rather simple and straightforward. The Hou-
bolt method is applied so as to convert both types of partial differential equations into an
equivalent system of modified Helmholtz equations. The method of fundamental solutions
is then combined with the method of particular solution to solve these new systems of
equations. Next, based on the exponential decay of the fundamental solution to the mod-
ified Helmholtz equation, the dense matrix is converted into an equivalent sparse matrix.
Finally, verification studies on the sensitivity of the method’s accuracy on the degree of
sparseness and on the time step magnitude of the Houbolt method are carried out for four
benchmark problems.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Systems of reaction diffusion and wave propagation equations model a large number of physical phenomena in various
scientific disciplines [1–6]. Analytical solutions to such problems are difficult or even impossible to construct whereby much
information can be recovered from the use of numerical methods, as the finite elements method (FEM) [7,8], finite difference
method (FDM)[9,10], boundary element method (BEM) [11,12], finite volume method (FVM) [13,14], spectral methods [15].
Although, these above-mentioned mesh-based numerical methods are dominated in engineering applications, some disad-
vantages also perplex the users such as the problems of mesh building, numerical quadrature and singular or hyper-singular
integration. In recent decades, the co-called meshless or meshfree numerical schemes have been proposed to further circum-
vent these disadvantages [16–18].

The method of fundamental solution (MFS) [19–25] is one of the promising meshless numerical schemes which has right-
fully received a great deal of attention by applied mathematicians and engineers in dealing with a variety of engineering
problems. The basic concept of the MFS is to decompose the solutions of the given problems by the combination of the fun-
damental solutions of the governing equations with unknown proper intensities. The MFS was first proposed by Kupradze
and Aleksidze [22] to approximate the solution of homogeneous elliptic-type partial differential equations. Furthermore, it
was used for nonhomogeneous problems in combination with the method of particular solution (MPS) [26–28]. Prior to this
study, it has been successfully applied to advection–diffusion equations, Burger’s equations, advection equations and wave
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equations. In this paper, we document the first attempt to apply the MFS for the solutions of reaction diffusion and wave
propagation equations by employing the Houbolt finite difference scheme [29,30]. The Houbolt method is an implicit and
unconditionally stable time-integration scheme [29]. The time-dependent loading of the system is discretized with the Hou-
bolt method and corresponding set-up problem is solved by using the Euler scheme. Then the physical problem is converted
into a nonhomogeneous modified Helmholtz equation at each time step, which is solved in this paper by using the coupled
MFS-MPS method. The MPS and MFS satisfy the nonhomogeneous equation and the corresponding homogeneous equation,
respectively. With the combination of the MFS and MPS, a truly meshless numerical scheme has been achieved. In the MFS–
MPS, we need to solve two densely populated matrices, one is for the particular solution by the MPS, and the other is for
homogeneous solution by the MFS. The development of the compactly supported radial basis function has made it possible
for the resulted MPS matrix to be sparse.

It is known that the coefficient matrix resulted from the MFS discretization is densely populated and that the condition
number is high [19,31]. Furthermore, for a large number of collocation points, it is expensive to solve. Direct solver for these
types of matrices require OðN3Þ operations and OðN2Þ storage entries. Also, it is possible that an ill-conditioned system will
result, whose solution will be either inaccurate or divergent, rendering the numerical simulation worthless [32]. It is also
well-known that, the feature of the MFS matrix is in generally largely depended on the prescribed boundary conditions,
the choice of the fictitious boundary and the wave-number. Based on the nature exponential decay of the fundamental solu-
tions [33] of the modified Helmholtz operator, the elements of the MFS matrix would be very small. The discrepancy
between the maximum and minimum values in the MFS matrix becomes wide apart. For large wave-number, most of the
MFS matrix elements have small values, which can be neglected in the computing process. As a result, the original densely
populated matrix becomes a sparse system in order to reduce the computational cost and circumvent the ill-conditioned
feature. The purpose of this paper is to illustrate the sensitivity of the method’s accuracy on the degree of sparseness and
on the time step magnitude of the Houbolt method for reaction diffusion and wave propagation problems.

The rest of the paper is organized as follows. In Section 2, governing equations and the Houbolt method are introduced.
The method of fundamental solution combined with the matrix sparseness technique and the method of particular solution
are presented in Section 3 and Section 4 respectively. Four numerical examples are employed to verify the accuracy and effi-
ciency compared with the analytical solutions or solutions obtained by the FEM. Section 5 concludes this study with some
remarks.

2. Governing equations and the Houbolt method

The governing equations of time-dependent reaction diffusion and wave propagation problems can be written as

Du� cu ¼ @u
@t
þ f ; t > 0; ð1Þ

Du� cu ¼ @
2u
@t2 þ f ; t > 0; ð2Þ

where D is the Laplace operator, u ¼ uðx; tÞ is a state variable at position x, time t; x ¼ ½x1 x2� for two-dimensional problem,
x ¼ ½x1 x2 x3� for three-dimensional problem, and c is a constant.

In order to deal with the time-dependent terms of Eqs. (1) and (2), the Houbolt method is selected to discretize the time
domain. The Houbolt method is a three-steps implicit and unconditionally stable time-integration scheme based on the
third-order interpolation. The difference formulae with respect to time t in the Houbolt method can be approximated as follows:

@u
@t

� �nþ1

� 1
6dt
ð11unþ1 � 18un þ 9un�1 � 2un�2Þ; ð3Þ

@2u
@t2

( )nþ1

� 1
dt2 ð2unþ1 � 5un þ 4un�1 � un�2Þ; ð4Þ

here dt is the time interval with time meshing tn ¼ n� dt (dt is the time step size) and un ¼ uð�; tnÞ, the superscripts of u
represent the time level. By substituting @u=@t and @2u=@t2 from Eqs. (3) and (4), respectively, into Eqs. (1) and (2), we obtain
the following equations:

Dunþ1 � cunþ1 � 11
6dt

unþ1 ¼ 1
6dt
ð�18un þ 9un�1 � 2un�2Þ þ f nþ1; ð5Þ

Dunþ1 � cunþ1 � 2
dt2 unþ1 ¼ 1

dt2 ð�5un þ 4un�1 � un�2Þ þ f nþ1; ð6Þ

To deal with the setup problem of time stepping, the first order Euler scheme is used to obtain un�1 and un�2 as follows:

un�1 ¼ uðx; tÞjt¼0 � dt
@uðx; tÞ
@t

����
t¼0
; n � 2; ð7Þ

un�2 ¼ uðx; tÞjt¼0 � 2dt
@uðx; tÞ
@t

����
t¼0
; n � 2: ð8Þ
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