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a b s t r a c t

This paper devotes to almost sure synchronization and almost sure quasi-synchronization
of complex networks with Markov switching. Some sufficient conditions are derived in
terms of the ergodic theory of continuous time Markov chain and the matrix measure
approach, which can guarantee that the dynamical networks almost surely synchronize
or quasi-synchronize to a given manifold. According to the property of Markov chain and
the exponential distribution of switching time sequence, we also estimate the probability
distribution of the quasi-synchronization error for a two-state Markov chain and then gen-
eralize them to a finite state space Markov chain. Meanwhile, some examples with numer-
ical simulations are given to show that the Markov chain plays an important role in
synchronization of networks.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, complex dynamical networks have attracted a lot of attention in science and engineering [1–3]. The syn-
chronization of all dynamical nodes is an important and interesting phenomena mostly because the synchronization can
well explain many natural phenomena. Therefore, the synchronization of dynamical networks has been actively studied
due to its wide applications for physics, communication, etc. Recently, there has been an increasing interest in the study
of synchronization of complex dynamical networks. In the previous works, Pecora and Carroll [4] showed that coupled cha-
otic systems can be synchronized in 1990. Hereafter they introduced master stability function method [5] to study the local
synchronization of coupled chaotic systems. By Lyapunov direct method, some sufficient conditions for synchronization in
an array of linearly coupled dynamical systems were proposed in [6–8]. Such sufficient conditions depended on the second
smallest eigenvalue of the Laplacian matrix in case that the graph was undirected. After this work, many control schemes
such as adaptive control [9,10], pinning control [11,12], fuzzy control [13], impulsive control [14–16], and intermittent con-
trol [17–19] are widely applied to achieve synchronization of complex dynamical networks.

Another important subject for the emergent behavior in dynamical networks is consensus in multi-agent systems. Indeed,
consensus in multi-agent systems, which implies that all the agents will reach an agreement in a certain manner, is a special
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case of synchronization. Recently, there have been a lot of researches on consensus in multi-agent systems, which can be
referred to [20–22] for details and references. It is well known that random uncertainties widely exist in biological networks
due to environmental noise (e.g. white noise and color noise). Such systems are described by stochastic differential systems
which have been used efficiently in modeling many practical problems that arise in the fields of engineering, physics, and
economics as well. So the theory of stochastic differential equation is attracting much attention in recent years [23–25].
Based on the theory of stochastic differential equations, a lot of synchronization results of dynamical networks or consensus
in multi-agent systems with white noise have been obtained [26–28]. However, telegraph noise, which is a simple color
noise, can be illustrated as a switching between two or more regimes of environment. If the switching is memoryless and
the waiting time for the next switch has an exponential distribution, then we can model the regime switching by a
finite-state Markov chain. In [29], Padilla and Adolph present a mathematical model for predicting the expected fitness of
phenotypically plastic organisms experiencing a variable environment and discussed the importance of time delays in this
mode. The authors [30] discussed the effect of telegraph noise on the well known SIS epidemic model and established the
condition for extinction and persistence for the SIS epidemic model with Markov switching. In 1958, Hajnal [31] investigated
the weak ergodicity of non-homogenous Markov chains and proposed scrambling matrix, which plays an important role in
the convergence of products of stochastic matrices. Based on the work of Hajnal, Salehi and Jadbabaie [32] provided a nec-
essary and sufficient condition for convergence of consensus algorithms when the underlying graphs of the network are gen-
erated by an ergodic and stationary random process. In [33], complex networks with stochastically switching coupling
structures was investigated. Stochastic switching coupling networks are addressed by independent and identically distrib-
uted switching processes or Markov jump processes. Some other researches on synchronization or consensus of networks
with stochastically switching topology can be referred in [34–36].

The aim of this paper is to study almost sure synchronization and almost sure quasi-synchronization of complex dynam-
ical networks with Markov chain taking value in finite state space. It is assumed that switching time sequence follows the
exponential distribution, which means that we do not require the networks to switch fast enough [37], also we do not
require the networks with the same expect of switching time interval [33]. By using ergodic theory of continuous time Mar-
kov chain [38] and the matrix measure approach [39,40], some sufficient condition is derived to ensure that the switched
networks almost surely synchronize to the switched manifold. It is interested that if subsystems are not synchronized,
but the other subsystems are synchronized, then the over system will achieve synchronization in the end. This shows that
Markov chain plays the important role in the synchronous behavior of networks. In addition, if the synchronization manifold
is a chaotic system without switching structure, parameter mismatches [41,42] are unavoidable in the implementations of
chaos synchronization systems. In this sense, we investigate almost sure quasi-synchronization between the switched net-
works and the chaotic system. We also estimate the probability distribution of the quasi-synchronization error by the prop-
erty of Markov chain and the exponential distribution for switching time interval. Finally, some examples with numerical
simulations are given to illustrate the applicability of the results. The rest of this paper is organized as follows. In Section
2, complex networks model with Markov switching is presented, together with some lemmas of solution. In Section 3, almost
sure synchronization is derived for switching networks by ergodic theory of continuous time Markov chain. Section 4
devotes to the investigation of almost sure quasi-synchronization of networks and the probability distribution of quasi-syn-
chronization error. In Section 5, some numerical examples are given to demonstrate that our results. At last, some conclu-
sions are given in Section 6.

Notations: Throughout this paper, R ¼ ð�1;þ1Þ;Rþ ¼ ½0;þ1Þ;Rn denotes the n-dimensional Euclidean space. the super-
script T represents the transpose. IN stands for the identity matrix with N dimension.

2. Preliminaries

Let ðX;F ; fF tg; PÞ be a complete probability space with a natural filtration fF tgtP0 satisfying the usual condition (i.e., it is
increasing right continuous and F 0 contains all P-null sets), rðtÞ; t P 0 be a right continuous Markov chain on the probability
space taking values in the state space S ¼ f1;2; . . . ;Mg with generator C ¼ ðdijÞM�M , where dii ¼ �

P
16j6M; j–idij and

dij > 0ði – jÞ is the transition rate from i to j, that is Pfrðt þ dÞ ¼ jjrðtÞ ¼ ig ¼ dij�þ oð�Þ, where � > 0. By [38], we see that
almost all sample paths of rðtÞ are constants except for a finite number of jumps in any finite subinterval of ½0;1Þ. Moreover,
there is a sequence fskgkP0 of finite valued F t stopping times such that 0 ¼ s0 < s1 < � � � < sk !1 almost surely and

rðtÞ ¼
X1
k¼0

rðskÞI ½sk ;skþ1ÞðtÞ; ð2:1Þ

where IA denotes the indicator function of set A. Given that rðskÞ ¼ i, the random variable skþ1 � sk follows the exponential
distribution with parameter �dii. That is

Pðskþ1 ¼ jjsk ¼ iÞ ¼ � dij

dii
; j – i; Pðskþ1 � sk P tjrðskÞ ¼ iÞ ¼ edii t ; 8t P 0:

Furthermore, this markov chain has a unique stationary distribution P ¼ ðp1;p2; . . . ;pMÞ satisfying PC ¼ 0 and
PM

i¼1pi ¼ 1.
We consider the following coupled network with Markovian switching
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