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a b s t r a c t

We derive a novel and rigorous correction to the classical Reynolds lubrication approx-
imation for fluids with viscosity depending upon the pressure. Our analysis shows that
the pressure dependence of viscosity leads to additional nonlinear terms related to the
shear rate and arising from a non-negligible cross-film pressure. We present a comparison
of the numerical solutions of the classical Reynolds equation and our modified equation
and conclude that the modified equation leads to the prediction of higher pressures and
viscosities in the flow domain.

� 2015 Published by Elsevier Inc.

1. Introduction

The Reynolds equation [1], which is an approximation of the classical Navier–Stokes equations, describes reasonably well
the flow of a large class of fluids whose viscosities can be assumed to be independent of the pressure in many lubrication
problems. However, there is a clear and incontestable evidence, that is well-documented, that attests to the fact that the vis-
cosity varies with pressure, especially so in several problems concerning thin film lubrication, cf. [2–4]. Experiments have
shown that in high pressure regimes pressure variations can significantly change the viscosity of certain lubricants and in
areas such as elastohydrodynamic lubrication the classical isoviscous lubrication theory is noticeably incapable of explaining
the existence of continuous lubricant films, for example, in rolling-contact bearings, cf. [4].

The traditional correction to the Reynolds approximation in the piezoviscous regime is based on a rather heuristic
assumption that it suffices to replace the constant viscosity in the Reynolds equation by a suitable viscosity-pressure
relationship, cf. [5]. This approach becomes questionable, however, in high pressure regimes because of the possible change
of type (loss of ellipticity) of the equations and the potential existence of cross-film pressure gradient, see the discussion in
[6]. In fact, for a Reynolds type approximation to be valid in this regime it ought to be derived from the full balance of linear
momentum equations governing the flow of incompressible fluids with pressure-dependent viscosities. Now, the mathe-
matical theory for the equations that govern the flows of fluids with a pressure-dependent viscosity has been advancing
in leaps and bounds over the last few decades, see [7–15], but the only rigorous attempt to derive a modified Reynolds equa-
tion for lubrication problems in piezoviscous regime based upon these equations seems to have been carried out by
Rajagopal and Szeri [6], see also [16] for further applications of their model.

In this paper we propose a new modified Reynolds equation for hydrodynamic lubrication in high pressure regimes. Our
approach is built upon an asymptotic expansion of the non-dimensional velocity and pressure fields in terms of a small
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dimensionless parameter �, related to the film thickness, and on a systematic analysis of the simplified set of equations
obtained at different orders of �, see [17] for a similar approach in the isoviscous case. Assuming that the dimensionless pres-
sure–viscosity coefficient is of order �, we show that the pressure distribution is governed by a Reynolds equation modified
by a term depending, in particular, on the square of the shear rate. In [6], the authors assumed, for simplicity, that the cross-
film pressure vanishes and derived a modified Reynolds equation, similar to ours, but depending on the elongation rate. Our
computations show that it is exactly the (lower-order) cross-film pressure which is responsible for the new modified term in
the Reynolds equation. We also prove that for smaller values of the pressure–viscosity coefficient the traditional modi-
fication of the Reynolds equation is a very accurate approximation of the pressure field.

It has been argued that the behavior of a piezoviscous fluid cannot be adequately described by a Reynolds type equation if
the principal shear stress s is not less than the reciprocal of the pressure–viscosity coefficient a, cf. [18]. This is not surprising
since problems of nonexistence and nonuniqueness are expected for the full balance of linear momentum equations if
s P a�1, cf. [7]. Similar conclusions can also be drawn from our modified Reynolds equations which ceases to be elliptic
if the shear stress times the pressure–viscosity coefficient is larger than, or of the order of, one.

In the piezoviscous regime, the pressure-dependence of viscosity can be modeled through the Barus relation (Barus [19])

l ¼ l0 eap; ð1Þ

where l0 denotes the dynamic viscosity measured at the ambient pressure (p ¼ 0) and a is a positive parameter related to
the rate of change of viscosity with respect to pressure, often referred to as the pressure–viscosity coefficient. The Barus
relationship, together with the Roelands formula (Roelands [20])

l ¼ l0
l0

lR

� �1�ð1þp=pRÞ Z

; ð2Þ

where lR ¼ 6:31 � 10�5 Pa s, pR ¼ 1:98 � 108 Pa and Z is a dimensionless parameter usually adjusted at ambient pressure to
the Barus relation through the equation

Z ¼ apR

ln l0 � ln lR
ð3Þ

are the most widely used models in elastohydrodynamic lubrication. For applications of these and other experimentally vali-
dated formulas for the variation of viscosity with pressure, temperature and density, see, e.g., [2,21–23,3,4].

In general, the pressure–viscosity coefficient a depends on the lubricant, and on the pressure, temperature and shear rate

in the contact area, cf. [3]. For different lubricant oils, its value has been shown to vary between 1 � 10�8 ðPaÞ�1 and

4 � 10�8 ðPaÞ�1, cf. [24–26]. If the constant Z in the Roelands formula (2) is computed from Eq. (3), then both the Barus

and the Roelands relation give 1
l

dl
dp ¼ a. We stress that although we rely on the assumption that the viscosity l varies with

pressure p according to the Barus or Roelands formula, our computations hold for more general pressure–viscosity relation-

ships for which 1
l

dl
dp is of the order of � or smaller.

Before concluding this introductory section, it is worthwhile recognizing a marked departure of the constitutive relation
of a piezoviscous fluid from that of the classical incompressible Navier–Stokes fluid with constant viscosity. While the latter
is described by an explicit constitutive function for the stress in terms of the symmetric part of the velocity gradient, the
former is an implicit relationship for the Cauchy stress and the symmetric part of the velocity gradient, leading to a totally
different structure to the equations governing the flows of such fluids which in turn raises interesting issues with regard to
both the mathematical and numerical analysis of the governing equations.

A one-dimensional rate type implicit model to describe the non-Newtonian response of fluids was introduced by Burgers
[27]. His model includes as a special case the pioneering model to describe the viscoelastic response of fluids that was
advanced by Maxwell [28]. Maxwell’s model is however not an implicit model as the symmetric part of the velocity gradient
can be expressed explicitly in terms of the stress and the time rate of the stress. Oldroyd [29] developed a systematic pro-
cedure to generate properly invariant three-dimensional rate type implicit constitutive relations. Such fluid models can be
used to describe the flow of viscoelastic fluids and it is our aim to generalize the type of approximation that is being carried
out here to include rate type implicit constitutive relations.

2. Lubrication approximation

Consider the following equations governing the isothermal flow of an incompressible, homogeneous, viscous fluid

q
@v
@t
þ ðv � rÞv

� �
� 2r � lðpÞDðvÞð Þ þ rp ¼ qb; ð4Þ

r � v ¼ 0; ð5Þ

where q > 0 is the constant density of the fluid, v ¼ ðu;v ;wÞ is the velocity field and p is a scalar variable, often referred to as
the mechanical pressure, associated with the incompressibility constraint (5). Moreover, we have assumed above that the
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