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a b s t r a c t

This paper is concerned with pth moment and almost sure exponential stability of the
exact and numerical solutions of neutral stochastic delay differential equations
(NSDDEs). Moment exponential stability criteria of the continuous and discrete solutions
are established by virtue of the Lyapunov method. Then the almost sure exponential stabil-
ity criterion is derived by the Chebyshev inequality and the Borel–Cantelli lemma. We also
examine conditions under which the numerical solution can reproduce the exponential
stability of exact solution. It is shown that the linear growth condition is necessary for
Euler–Maruyama (EM) method to maintain the moment exponential stability of the exact
solution. If the drift coefficient of NSDDE satisfies the one-sided Lipschitz condition, EM
method may break down, but we show that the backward EM (BEM) method can share
the mean square exponential stability of the exact solution.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Stochastic differential systems, including stochastic differential equations (SDEs), stochastic delay differential equations
(SDDEs) and NSDDEs, have been greatly developed and play an important role in many ways such as economics, finance,
physics, biology, medicine, and other science. Recently, stability theorems of stochastic differential systems, for example,
moment stability (M-stability, see [1,2]) and almost sure stability (or the trajectory stability (T-stability), see [3]), have
attracted much attention. There are many results on stability theorems for stochastic differential systems (see Mao’s book
[4,5]). Some of the stability criteria related to the pth moment exponential stability of the solutions to neutral stochastic
functional differential equations (NSFDEs) were considered in [6–14] and the references therein.

Due to that most stochastic differential systems cannot be solved explicitly, numerical methods have become essential.
The stability theory of numerical solutions is one of fundamental research topics in the numerical analysis. The stability of
numerical solutions for SDEs has received increasing attention in recent years (see [2,3,15–19] and the related references
therein). The continuous and discrete semi-martingale convergence theorems are important tools for investigating the
almost surely asymptotic stability of the continuous and discrete stochastic systems (see [17,19–21]). The advantage of dis-
crete semi-martingale convergence theorem is that it produces almost sure exponential stability of the numerical solution
directly without resorting to the Chebyshev inequality and the Borel–Cantelli lemma (see [20,21]). Many numerical results
for stochastic delay differential equations of neutral type focused on convergence and asymptotic stability (see [22–28]). To
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date, for NSDDEs, the continuous and discrete semimartingale convergence theorems succeeded in obtaining almost surely
asymptotic stability of the exact and numerical solutions (see [25]). So far little is known about the exponential stability and
the decay rate of the numerical solutions to this NSDDEs and the aim of this paper is to close this gap.

This paper devotes to investigate the moment exponential stability of the exact and numerical solutions of NSDDEs and
examine conditions under which the numerical solutions of NSDDEs can preserve the mean square stability of the exact solu-
tion. Then the almost sure exponential stability can be obtained by the Chebyshev inequality and the Borel–Cantelli lemma.
The new stability criterion of the exact solution, we will establish, gives a more accurate bound of Lyapunov exponent than
the existed results. Stability analysis aims to study whether the numerical methods can recover the moment exponential
stability of the exact solution for the small timesteps. It is shown that the linear growth condition is necessary for the EM
method to reproduce the moment exponential stability. A counterexample will be introduced to show that EM method
may not be able to reproduce this stability of the exact solution if the drift coefficient f does not satisfy the linear growth
condition. However, the BEM method produces good results under a one-sided Lipschitz condition, which is a less restrictive
condition than the linear growth condition.

The rest of the paper is arranged as follows. The next section provides necessary notations and states the definitions on
pth moment exponential stability and almost sure exponential stability for the use of this paper. In Section 3, the criteria
related to the pth moment exponential stability of the exact and numerical solutions to NSDDEs are considered. Section 4
presents some conditions under which EM and BEM approximations may reproduce the exponential mean square stability
of the exact solution. Section 5 gives the conclusion to end the work.

2. Notations and definitions

Throughout this paper, unless otherwise specified, we use the following notations. Let j � j be the Eucilidean norm in Rn. If

A is a vector or matrix, its transpose is denoted by AT . If A is a matrix, its trace norm is denoted by jAj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðAT AÞ

q
. Let

ðX;F; PÞ be a complete probability space with a filtration fFtgtP0 satisfying the usual conditions, that is, it is right continuous
and increasing while F0 contains all P-null sets. wðtÞ is a d-dimensional Brownian motion on this probability space. Let
Rþ ¼ ½0;1Þ and s > 0. Denoted by Cð½�s;0�;RnÞ the family of continuous functions from ½�s;0� to Rn with the norm

kuk ¼ sup�s6h�0juðhÞj. Let Cb
F0
ð½�s;0�;RnÞ be the family of all F0-measurable bounded Cð½�s;0�;RnÞ valued random variables

n ¼ fnðhÞ : �s 6 h � 0g. The inner product of X;Y 2 Rn is denoted by hX;Yi or XT Y . We use a _ b to denote maxfa; bg and a ^ b
to denote minfa; bg.

We consider the following n-dimensional nonlinear NSDDE

dðxðtÞ � uðxðt � sÞÞÞ ¼ f ðxðtÞ; xðt � sÞ; tÞdt þ gðxðtÞ; xðt � sÞ; tÞdwðtÞ; t P 0; ð2:1Þ

with initial data x0 ¼ n, where n ¼ fnðhÞ : �s 6 h � 0g;u : Rn ! Rn; f : Rn � Rn � Rþ ! Rn and g : Rn � Rn � Rþ ! Rn�d, For
the purpose of stability, we assume that uð0Þ ¼ 0 and f ð0;0; tÞ ¼ gð0;0; tÞ ¼ 0. That means (2.1) admits a trivial solution.
Then we give some assumptions for u; f and g, under which there exists a unique local solution xðtÞ ¼ xðt; nÞ to Eq. (2.1).

Assumption 2.1 (Local Lipschitz condition). f and g satisfy the local lipschitz condition, that is, for each j > 0 there exists a
positive constant Cj such that

jf ðx; y; tÞ � f ðx; y; tÞj _ jgðx; y; tÞ � gðx; y; tÞj 6 Cjðjx� xj þ jy� yjÞ ð2:2Þ

for all t P 0 and jxj _ jyj _ jxj _ jyj 6 j.

Assumption 2.2 (Contractive mapping). u is a contractive mapping, that is, there exists a positive constant j 2 ð0;1Þ such
that

juðxÞ � uðyÞj 6 jjx� yj ð2:3Þ

for all x; y 2 Rn.

Let C2ðRn; RþÞ denote the family of all nonnegative functions VðxÞ on Rn which are continuously twice differentiable in x.
For each VðxÞ 2 C2ðRn; RþÞ, define an operator LV from Rn � Rn � Rþ to R:

LVðx; y; tÞ ¼ Vxðx� uðyÞÞf ðx; y; tÞ þ 1
2

trace gTðx; y; tÞVxxðx� uðyÞÞgðx; y; tÞ
� �

: ð2:4Þ

To facilitate reading, we give the definitions on the pth moment exponential stability and almost sure exponential stability of
the exact and numerical solutions (see [4,29]).

Definition 2.1. The trivial solution xðtÞ to Eq. (2.1) is said to be pth moment exponentially stable (or almost surely
exponentially stable) if there exists a constant g > 0 such that
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