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a b s t r a c t

We investigate fluid flow and solidification of a binary alloy on a moving substrate. We
derive asymptotic solutions for the flow, thermal and concentration fields as well as the
growth rate of the solid–liquid interface in the limit of small Prandtl number. We quantify
the effect of a forced flow in the melt on the growth characteristics of a solid–liquid inter-
face and the boundary-layer structure at the interface. We also examine the influence of
the forced flow on a local advective flux of solute in the melt.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

The solidification of fluids is an integral part of many natural and industrial processes. Among typical examples is the for-
mation of snowflakes and icicles in winter or the sea ice in polar areas. The phase-change processes play an important role
also in material engineering during production of new materials such as metal castings and semiconductors.

It is a well known phenomenon that a material solidifying from an alloy has usually different composition than that of the
original system. For example, the ice growing from sea water is almost pure. The way in which the liquid material solidifies
can affect the quality of the final solidified product. A typical example is the appearance of structural defects, called freckles,
during solidification of metal alloys (see [1]). To control the quality of solidified products, it is necessary to understand the
coupling between fluid flow and solidification involved.

A mathematical model for diffusion-driven solidification of a binary alloy cooled below was studied in [2] as an extension
of the classical Stefan problem for a single component system. The interface between the solid and liquid phases, charac-
terised by the local conservation of heat and solute, was assumed planar. The rate of solidification in the model was con-
trolled by the diffusive transport of solute away from the interface. Analytical self-similar solutions were found, with
square-root time growth of the interface. The evolution of a perturbed, initially planar solid–liquid interface during the
diffusion-driven solidification of a binary alloy was studied in [3].

Of different nature is a so-called directional solidification in which the solidifying liquid is pulled at constant speed
through a constant temperature gradient and the solid–liquid interface is stationary. In recent years, the models of direc-
tional solidification were studied extensively in context of morphological and convective instabilities (see [4,5]).

An experimental configuration that is common in material engineering is the one in which a cooled horizontal boundary
(substrate) is moving at a constant speed in horizontal direction in an imposed vertical temperature gradient (continuous
strip and spin casting). There are two main features that distinguish such a configuration from those with a stationary cooled
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boundary or those of directional solidification: (i) the solidifying interface is not planar; (ii) there is a strong
two-dimensional flow in the liquid phase. Such a configuration was previously addressed as a local approximation of spin
casting (see the review article [6]). The initial solidification of a pure liquid–metal film flow over a moving boundary was
studied in [7]. The problem of a steady two-dimensional boundary layer flow of a binary alloy over a moving substrate
was studied in [8], where self-similar solutions for the velocity, temperature and solute concentration fields were found
in the limit of small Prandtl number, which is typical of liquid metal flows. The interface was shown to have a
square-root growth in the horizontal direction. The self-similar analysis was facilitated by the assumption of semi-infinite
domain in vertical direction and that of small interfacial slope. An extension of the problem to include a two-phase, or
mushy, region was considered in [9,10]. The mushy layer consisted of two separate layers: a packing region, with solid phase
moving with the substrate, and a dispersed region, where solid phase was free to move with the fluid. The self-similar solu-
tions were found numerically.

In this paper, we investigate a problem originally formulated in [8], but employing a different scaling of the governing
equations. As in [8], we assume the asymptotic limit of small Prandtl number. This limit is singular for the flow field, cor-
responding to a thin viscous boundary layer adjacent to the solid–liquid interface. For the temperature and solute concen-
tration field, however, this limit is regular, which simplifies the asymptotic analysis. From the experimental point of view, of
central importance is the ratio of the horizontal flow velocity forced at the infinity to the pulling rate of the substrate. It is
through this velocity ratio that the flow controls the solidification. The main motivation of the present paper is the assess-
ment of how this velocity ratio affects the solidification, particularly the asymptotic limit when this ratio is small.

The organisation of the paper is as follows. In Section 2 we describe the physical model and formulate the dimensional equa-
tions governing the transport of heat, solute and momentum in the liquid region and of heat in the solid region. We then nondi-
mensionalise the problem and, in order to facilitate the self-similar analysis, make a boundary-layer reduction in the limit of
small interfacial slope. In Section 3 we present the analytical results for the flow, thermal and concentration fields in the limit of
small Prandtl number, together with an eigenvalue relation for the dimensionless growth rate. In Section 4 we derive the
approximate forms of solutions in the limit of small velocity ratio. A closed form for advective flux of solute is also presented.
Finally, in Section 5 we provide some numerical estimates for a real physical system and discuss the results obtained.

2. Mathematical formulation

We consider a binary alloy occupying the region x > 0 and z > 0, which solidifies over a cooled plate z ¼ 0 moving hor-
izontally at constant speed U0 > 0. The temperature of the plate is maintained at a value T0 that is assumed to be above the
temperature corresponding to the eutectic point of the binary phase diagram (below which the system is completely solid-
ified) and below the liquidus temperature TLðC1Þ corresponding to the far-field solute concentration C1 at z!1. The
far-field temperature in liquid is T1. A definition sketch for the problem under consideration is depicted in Fig. 1. A typical
phase diagram for solidifying binary alloy is shown in Fig. 2.

The interface is assumed to be in local thermodynamic equilibrium, so that its temperature Th and the composition on the
liquid side of the interface, Ch, are related by the liquidus relationship

Th ¼ TLðChÞ � T0 � ĈðCh � C0Þ; ð2:1Þ

where Ĉ > 0 is the liquidus slope and C0 is such that T0 ¼ TLðC0Þ. We assume complete solute rejection so that the solid is
free from solute. We also assume that there is no mass diffusion in the solid.

We denote by Dh=Dt ¼ �u0 � n the local velocity of the solid material elements relative to the (stationary) solid–liquid
interface, where u0 ¼ U0i is the velocity of the solid material elements relative to the stationary frame of reference, i being
the unit vector in the horizontal direction and n is the outward unit vector normal to the interface. Then, the dimensional
heat and solute conservation laws at the solid–liquid interface can be formulated as

Fig. 1. A definition sketch for the problem of solidification of a binary alloy over a horizontally moving substrate. A semi-infinite region x > 0; z > 0 is filled
with a binary alloy of far-field solute concentration C1 and temperature T1 (for z!1 and x fixed). The cooled lower boundary lies in the plane z ¼ 0 and is
moving in horizontal direction at a constant speed U0. The stationary solid–liquid interface is located at z ¼ hðxÞ. The horizontal flow velocity at z!1 is
U1 .
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