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a b s t r a c t

In this article, we consider the inverse problem of recovering a piecewise constant Lamé
parameters by a single boundary measurement. We also consider the geometric inverse
problem of locating the interface where the jump of the parameters occurs. These problems
turn out to an optimization problems by making use of the Kohn–Vogelius cost function.
We rewrite the functional in a min–sup form and we use the differentiability of the
min–sup combined with the function space parametrization and the function space
embedding to get the optimality condition. These techniques allow us to avoid the differ-
entiability of the states variables with respect to the shape or the Lamé parameters. We
apply an iterative algorithm and we give some numerical results.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

This paper is devoted to the mathematical analysis of some inverse problems in linear elasticity, namely the identification
of Lamé parameters and the interfaces where the jump of the parameters occurs, from boundary measurement. This type of
inverse problems arises in practical situations like the design, the control of optimal industrial structures. In the case of med-
ical imaging, inverse parameter estimation can potentially be used to determine properties and location of different tissue
types while using minimally invasive technologies instead of dissecting the patient. Classifying the elastic properties of tis-
sue and locating abnormalities can help to identify cancerous growth.

From the theoretical point of view, the inverse problem of Lamé parameters has been studied by several authors. In the
two dimensional case and when the parameters are C1 functions, Akamatsu, Nakamura and Steinberg [1], proved that for the
case of full Cauchy data, one can recover the Taylor series of Lamé parameters on the boundary. This result was extended into
higher dimensions [2]. For the case of full Cauchy data, Nakamura and Uhlmann [2] established that in the two dimensions,
the Lamé coefficients are uniquely determined, assuming that they are sufficiently close to a pair of positive constants.
Recently Imanuvilov and Yamamoto in [3] proved for the two dimensional case that the Lamé coefficient k can be recovered
from partial Cauchy data if the coefficient l is some positive constant. For the three dimensional case Nakamura and
Uhlmann in [4,5] and Eskin and Ralston [6] proved uniqueness for both Lamé coefficients when l is assumed to be close
to a positive constant. The proofs in the above papers rely on construction of complex geometric optics solutions. The ques-
tion of stability was addressed by Isakov, Wang and Yamamoto [7], they proved a Hölder and Lipschitz stability estimates of
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determining all coefficients of a dynamical Lamé system with residual stress, including the density Lamé parameters, and the
residual stress, by three pairs of observations from the whole boundary or from a part of it. The geometric inverse problem
was addressed by several authors, for more details the reader is referred to [8–14]. Nevertheless it is still a challenging prob-
lem both for the mathematical and numerical aspects.

In the absence of general analytic formulae, the inverse problems are usually solved by minimizing an objective function
that measures the mismatch between the model predictions and the measurements. A central element in the minimization
procedure is the calculation of the gradient of the objective function with respect to the variations in the shape of the inter-
faces or the parameters, which is a basic tool to obtain necessary conditions and to provide us with gradient information
required by the gradient type optimization methods.

For the study of the optimization problems, the traditional method involves the computation of the state derivative with
respect to the domain or the parameters. Usually such a derivative requires stronger regularity assumptions which are not
satisfied in the elasticity problem with discontinuous Lamé coefficients. However, the state differentiability is not necessary
in many cases, and even when the state variable is not differentiable. It is well established now that the sensitivity analysis
(see [15–23]) remains a powerful tool to solve inverse problems. Therefore, avoiding the differentiability of the state is of a
great importance in such situations and particularly for the problem under consideration.

In this work, we propose a Kohn–Vogelius type cost function. We express each of the optimization problems as a min max
of suitable lagrangian functional. The characterization of the change in geometric domain is obtained by the velocity method
[15,16]. Finally we use the theorem on the differentiability of a saddle point (i.e., a minimax) of such lagrangian functional
with respect to a parameter which provides very powerful tools to obtain the gradient of the cost function by function space
parametrization or function space embedding [16] without using the derivative of the state. The geometrical inverse prob-
lem presented in this paper extends the result presented in [24] to locate the jump of the conductivity for the Laplace
equation.

The rest of the paper is restructured as follows. After introducing the formulation of the problem in Section 2. We perform
the saddle point formulation of the problems (2.2) and (2.3) and the Lagrangian associated with the cost functional (2.4) in
Section 3. Section 4 is devoted to the differentiability of the cost function with respect to Lamé parameters. In Section 5, we
use the function space parametrization and the function space embedding to compute the shape derivative of the functional
J. Section 6 is devoted to the characterization of the shape gradient. In Section 7 we present a gradient type algorithm to solve
numerically the inverse problem related to the identification of an inclusion in a particular case and we use the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm to find numerically the Lamé coefficients. We end in the last section by a short
conclusion.

2. Problem Formulation

Let X � R2 be a bounded Lipschitz domain with boundary @X ¼ CN [ CD, where CN \ CD ¼ ;. Suppose that the elastic
medium X contains a single inclusion x which is also a bounded Lipschitz domain. We suppose that distð@X; @xÞ > d for
some positive constant d. Let the constants ðke;leÞ denote the background Lamé coefficients, that are the elastic parameters
in the absence of any inclusion. Suppose that x has the pair of Lamé parameters ðks;lsÞ which is different from those of the
background elastic body. It is always assumed that

le > 0; ke þ le > 0; ls > 0 and ks þ ls > 0;

ðke � ksÞðle � lsÞP 0; ðke � ksÞ2 þ ðle � lsÞ
2

� �
– 0:

We consider the inverse problems of recovering the interface @x and the Lamé parameters ðke;le; ks;lsÞ from boundary
measurement. Namely, given the deformation uðxÞ ¼ f on CN;uðxÞ ¼ 0 on CD (Dirichlet data) and the forces in the direction
of the normal rðuÞm ¼ g on CN (Neumann data), then the inverse problems consists of locating the interface @x and the Lamé
parameters from the knowledge of the pair ðf ; gÞ.

For a given current density g 2 ðL2ðCNÞÞ
2
, the deformation u satisfies the following problem:

divrðuÞ ¼ 0 in X;

rðuÞm ¼ g on CN;

u ¼ 0 on CD;

8><>: ð2:1Þ

The stress tensor rðuÞ is related by the linearized strain tensor eðuÞ via the Hooke’s law:

rðuÞ ¼ C : eðuÞ ¼
X2

i;j;k;l¼1

Cijkl
@uk

@xl
; eðuÞ ¼ 1

2
Duþ ðDuÞ�ð Þ:

The elasticity tensor is given by

Cijkl ¼ kdijdkl þ lðdikdjl þ dildjkÞ; i; j; k; l ¼ 1;2;

H. Meftahi, J.-P. Zolésio / Applied Mathematical Modelling 39 (2015) 1554–1576 1555



Download	English	Version:

https://daneshyari.com/en/article/1703397

Download	Persian	Version:

https://daneshyari.com/article/1703397

Daneshyari.com

https://daneshyari.com/en/article/1703397
https://daneshyari.com/article/1703397
https://daneshyari.com/

