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a b s t r a c t

In this paper, Volterra integro-differential equations of fractional order is investigated by
means of the variational iteration method. The fractional derivative is described in the
Caputo sense. Moreover, stability and convergence of the proposed scheme are analyzed.
Finally, some examples are presented to illustrate the theoretical results.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, various kinds of analytical methods and numerical methods were used to solve fractional integro-
differential equations. For instance we can mention the following papers. Rawashdeh [1] applied collocation method to study
the integro-differential equations of fractional order, authors of [2] applied the Adomian decomposition method (ADM) to
approximate solutions for fourth-order integro-differential equations of fractional order, Lepik [3] applied the Haar wavelet
method to solve the fractional integral equations, authors of [4] applied fractional differential transform method to
approximate solutions for integro-differential equations of fractional order.

In the present paper, we apply variational iteration method (VIM) [5–11] to solve Volterra integro-differential equations.
This method is now widely used by many researchers to study linear and nonlinear problems. This method is employed in
[12] to solve the Klein–Gordon partial differential equations. Authors of [13] applied the variational iteration method to solve
the Lane–Emden differential equation. For more applications of the method the interested reader is referred to [14–17].

In this study, we consider Volterra integro-differential equations of fractional order of the form

DanðxÞ � k
R x

0 kðx; tÞnðtÞdt ¼ gðxÞ;
nðiÞð0Þ ¼ ci; i ¼ 0;1;2; . . . ;n� 1; n ¼ ½a� þ 1:

(

where g 2 L2ð½0;X�Þ; k 2 L2ð½0;X�2Þ are given functions, Da is the fractional derivative of order a, and nðxÞ is unknown
function.
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The rest of the paper is organized as follows. In Section 2, we recall some basic definitions and properties of the fractional
calculus theory. In Section 3, we construct an algorithm for solving Volterra integro-differential equations of fractional order
by using the VIM. In Section 4, stability of the proposed approach is discussed. In Section 5, the convergence conditions of our
proposed scheme are formulated and proved. In Section 6, some illustrative examples are given. Some concluding remarks
are given in Section 7.

2. Preliminaries and notations

This section deals with some preliminaries and notations regarding fractional calculus. For more details see [18–32].

Definition 1. A real function nðtÞ; t > 0, is said to be in the space Ca;a 2 R, if there exists a real number p ð> aÞ, such that
nðtÞ ¼ tpn1ðtÞ, where n1ðtÞ 2 C½0;1Þ, and it is said to be in the space Cm

a ;m 2 N
S

0f g, if and only if nðmÞðtÞ 2 Ca.

Definition 2. The Mittag–Leffler function EaðzÞ with a > 0 is an extension of the exponential function which defined by the
following series representation, valid in the whole complex plane

EaðzÞ ¼
X1
n¼0

zn

Cðnaþ 1Þ ; z 2 C: ð1Þ

Definition 3. The (left sided) Riemann–Liouville fractional integral of order a > 0 of a function nðtÞ 2 Ca; a P �1, is defined
as

Ia0þnðtÞ ¼
1

CðaÞ
R t

0
nðsÞ

t�sð Þ1�a ds; a > 0; t > 0;

nðtÞ;

(
ð2Þ

Ia0þnðx; tÞ ¼
1

CðaÞ

Z t

0

nðx; sÞ
ðt � sÞ1�a ds; a > 0; t > 0; ð3Þ

where CðaÞ is the well-known Gamma function.

Definition 4. The (left sided) Riemann–Liouville fractional derivative of nðtÞ; nðtÞ 2 Cm
�1; m 2 N

S
0f g, of order a is defined

as

Da
0þnðtÞ ¼

dm

dtm Im�a
0þ nðtÞ; m� 1 < a 6 m; m 2 N : ð4Þ

Definition 5. The Caputo fractional derivative of nðtÞ; nðtÞ 2 Cm
�1; m 2 N

S
0f g, is defined as

cDa
0þnðtÞ ¼

Im�a
0þ nðmÞðtÞ

h i
; m� 1 < a < m; m 2 N ;

dm

dtm nðtÞ; a ¼ m;

8<: ð5Þ

cDa
0þnðx; tÞ ¼ Im�a

0þ

@mnðx; tÞ
@tm ; m� 1 < a < m; ð6Þ

cDa
0þ ðD

m
0þnðtÞÞ ¼

cDaþm
0þ nðtÞ; m ¼ 0;1; . . . ;n� 1 < a < n: ð7Þ

Property. Assume that the continues function nðtÞ, has a fractional derivative of order a, then we have

cDa
0þ ðI

b
0þnðtÞÞ ¼

Ib�a
0þ nðtÞ; a < b;

nðtÞ; a ¼ b;

D�bþa
0þ nðtÞ; a > b;

8><>: ð8Þ

Ia0þ ð
cDa

0þnðtÞÞ ¼ nðtÞ �
Xm�1

k¼0

nðkÞð0þÞ t
k

k!
; m� 1 < a 6 m; m 2 N : ð9Þ
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