
Numerical solutions of systems of high-order Fredholm
integro-differential equations using Euler polynomials

Farshid Mirzaee ⇑, Saeed Bimesl
Faculty of Mathematical Sciences and Statistics, Malayer University, P.O. Box 65719-95863, Malayer, Iran

a r t i c l e i n f o

Article history:
Received 24 February 2013
Received in revised form 31 January 2015
Accepted 12 February 2015
Available online 4 March 2015

Keywords:
Linear FIDEs
Error estimation
Euler polynomials

a b s t r a c t

In this paper, a novel method called Euler collocation method is presented to obtain an
approximate solution for systems of high-order Fredholm integro-differential equations.
The most significant features of this method are its simplicity and excellent accuracy.
After implementation of our method, the main problem would be transformed into a sys-
tem of algebraic equations such that its solutions are the unknown Euler coefficients. In
addition, under several mild conditions the error and stability analysis of the proposed
method are discussed. Finally, complete comparisons with other methods and superior
results confirm the validity and applicability of the presented method.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Some important problems in science and engineering can usually be reduced to a system of integral and integro-dif-
ferential equations. Integro-differential equation has attracted much attention and solving this equation has been one of
the interesting tasks for mathematicians. In this research we try to introduce a solution of a system of high-order linear
Fredholm integro-differential equations (FIDEs) with variable coefficients in the form

Xm

n¼0

Xk

j¼1

Un
i;jðxÞy

ðnÞ
j ðxÞ ¼ giðxÞ þ

Z b

a

Xk

j¼1

Ki;jðx; tÞyjðtÞdt; i ¼ 1;2; . . . ; k; 0 6 a 6 x 6 b; ð1Þ

with the mixed conditions

Xm�1

j¼0

an
i;jy
ðjÞ
n ðaÞ þ bn

i;jy
ðjÞ
n ðbÞ

� �
¼ ln;i; i ¼ 0;1; . . . ;m� 1; n ¼ 1; . . . ; k; ð2Þ

where yð0Þj ðxÞ ¼ yjðxÞ is an unknown function. Also, Un
i;jðxÞ; giðxÞ and Kijðx; tÞ are continuous functions defined on the interval

a 6 x; t 6 b. Moreover, the functions Ki;jðx; tÞ for i; j ¼ 1;2; . . . ; k can be expanded Maclaurin series and also an
i;j; b

n
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appropriate constants. Many researchers are shown in solving such types of integro-differential equations system such as,
Adomian decomposition method [1], the Tau method [2], Galerkin method [3], He’s Homotopy perturbation method [4], dif-
ferential Transform method [5] and rationalized Haar functions method [6].
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Operational matrices of differentiation and integration have become increasingly important in the field of numerical solu-
tion of FIDEs. As some primary research works, one can refer to the Taylor, Chebyshev and Legendre matrix methods which
have been used by Sezer et al. [7–9] to solve linear differential, Fredholm–Volterra integro-differential equations and their
systems. Recently, Yüzbas�ı et al. [10–14] have studied the Bessel matrix and collocation methods for numerical solutions
of the neutral delay differential equations, the pantograph equations, the Lane–Emden differential equations, Fredholm inte-
gro-differential equations and Volrerra integral and Fredholm integro-differential equation systems.

In this study, the basic ideas of the previous works are developed and we introduce a new method called the Euler
approximation technique to find an approximate solution of (1) expressed in the truncated Euler series form
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so that ci;n for i ¼ 1;2; . . . ; k and n ¼ 0;1; . . . ;N are the unknown Euler coefficients, and EnðxÞ for n ¼ 0;1; . . . ;N are the Euler
polynomials of the first kind which are constructed from the following relation
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is a binomial coefficient. Explicitly, the first basic polynomials are expressed by
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2. Preliminaries and notations

In this section, we state some basic results about polynomial approximations. These important properties will enable us
to solve the systems of Fredholm integro-differential equations.

Definition 1 [15]. For a given continuous function f 2 C½a; b� a best approximation polynomial of degree N is a polynomial
p 2 Pn such that

kf � pk1 6 kf � qk1; 8q 2 PN

where PN is the ðnþ 1Þ-dimensional subspace of C½a; b� spanned by the functions 1; x; . . . ; xN and the uniform norm is defined
by kfk1 ¼ maxa6x6b j f ðxÞ j.

Theorem 1 [16]. Given N þ 1 distinct nodes x0; x1; . . . ; xN and N þ 1 corresponding values f 0; f 1; . . . ; f N then there exists a unique
polynomial pN 2 PN such that pNðxiÞ ¼ f i for i ¼ 0;1; . . . ;N. pN is called the interpolating polynomial of f.

The best approximation polynomials p is also an interpolant of f at N þ 1 nodes and the error is given by [17]:
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where CNðXÞ denotes the Lebesgue constant
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where lðXÞi ðxÞ 2 PN is the ith Lagrange cardinal polynomial associated with the grid X ¼ ðxiÞi¼0;1;...;N and x is the modulus of
continuity of f.

Now, we recall some results on the Euler polynomials [18–20], which play important roles in the proposed collocation
scheme. The Euler polynomials EnðxÞðn ¼ 0;1; . . .Þ satisfy the following formula
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