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The most significant features of this method are its simplicity and excellent accuracy.
After implementation of our method, the main problem would be transformed into a sys-
tem of algebraic equations such that its solutions are the unknown Euler coefficients. In
addition, under several mild conditions the error and stability analysis of the proposed
) method are discussed. Finally, complete comparisons with other methods and superior
Linear FIDEs o . o1s )

Error estimation results confirm the validity and applicability of the presented rpethod. _

Euler polynomials © 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Some important problems in science and engineering can usually be reduced to a system of integral and integro-dif-
ferential equations. Integro-differential equation has attracted much attention and solving this equation has been one of
the interesting tasks for mathematicians. In this research we try to introduce a solution of a system of high-order linear
Fredholm integro-differential equations (FIDEs) with variable coefficients in the form
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where y}o) (x) = y;(x) is an unknown function. Also, U;(x),g;(x) and Kj(x,t) are continuous functions defined on the interval

a < x,t < b. Moreover, the functions K;;(x, t) fori,j=1,2,..., k can be expanded Maclaurin series and also af;, b?J and p,,; are
appropriate constants. Many researchers are shown in solving such types of integro-differential equations system such as,
Adomian decomposition method [1], the Tau method [2], Galerkin method [3], He’s Homotopy perturbation method [4], dif-

ferential Transform method [5] and rationalized Haar functions method [6].
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Operational matrices of differentiation and integration have become increasingly important in the field of numerical solu-
tion of FIDEs. As some primary research works, one can refer to the Taylor, Chebyshev and Legendre matrix methods which
have been used by Sezer et al. [7-9] to solve linear differential, Fredholm-Volterra integro-differential equations and their
systems. Recently, Yiizbasi et al. [10-14] have studied the Bessel matrix and collocation methods for numerical solutions
of the neutral delay differential equations, the pantograph equations, the Lane-Emden differential equations, Fredholm inte-
gro-differential equations and Volrerra integral and Fredholm integro-differential equation systems.

In this study, the basic ideas of the previous works are developed and we introduce a new method called the Euler
approximation technique to find an approximate solution of (1) expressed in the truncated Euler series form

N
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so that¢;, fori=1,2,...,kandn=0,1,...,N are the unknown Euler coefficients, and E,(x) for n = 0,1, ..., N are the Euler

polynomials of the first kind which are constructed from the following relation

n
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with Eg(x) =1, where ( > is a binomial coefficient. Explicitly, the first basic polynomials are expressed by

k
n=1 E(x)=x—-3, n=2; E(x)=x* —xand if n = 3; E3(x) =x> —3x% +1x.

2. Preliminaries and notations

In this section, we state some basic results about polynomial approximations. These important properties will enable us
to solve the systems of Fredholm integro-differential equations.

Definition 1 [15]. For a given continuous function f € C|a, b] a best approximation polynomial of degree N is a polynomial
p € Py such that

If =pll <IIf —qll., Vq€Py

where Py is the (n + 1)-dimensional subspace of C[a, b] spanned by the functions 1,x, ..., x" and the uniform norm is defined
by [Ifll.c = MaXacxes | f(X) |-

Theorem 1 [16]. Given N + 1 distinct nodes xo,x1, ..., Xy and N + 1 corresponding values f,f+,...,fy then there exists a unique
polynomial py € Py such that py(x;) = f; fori=0,1,...,N. py is called the interpolating polynomial of f.

The best approximation polynomials p is also an interpolant of f at N + 1 nodes and the error is given by [17]:
b-a
I = Pl < (1 4+ TN = pll.c < 6(1+ TwX)eo 7).

where ['y(X) denotes the Lebesgue constant
- (X)

X) = ‘ ol

i=0 o0

where l§X> (x) € Py is the ith Lagrange cardinal polynomial associated with the grid X = (x;);_o;__y and w is the modulus of
continuity of f.

Now, we recall some results on the Euler polynomials [18-20], which play important roles in the proposed collocation
scheme. The Euler polynomials E,(x)(n = 0,1,...) satisfy the following formula
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