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a b s t r a c t

This work proposes a transfer function identification (or impulse response) method to
solve inverse heat conduction problems. The technique is based on Green’s function and
the equivalence between thermal and dynamic systems. The inverse heat conduction prob-
lems, 1D and 3D transient named X22 and X33Y33Z33, respectively, are selected to present
the fundamentals of the method proposed. The 1D-transient case is a classic heat conduc-
tion problem used to obtain thermophysical properties and the 3D-transient problem stud-
ied describes a machining process. From the temperature profile (hypothetical or
experimental temperature far from the heat source) and knowing the transfer function it
is possible to estimate the heat flux by different approaches: deconvolution, spectral den-
sities estimation or inverse fast Fourier procedure. MATLAB codes were used. The work is
concluded with the application of the technique in an experimental case of temperature
estimation at the tool-work-piece interface during a machining process.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Inverse problems have important applications in many areas, with special emphasis on engineering and medicine and can
be applied in various ways. The main feature of this type of approach is to obtain the solution of the physical problem indi-
rectly, for example, determination of thermal fields at surfaces without access, obtaining the force applied to a complex
structure from knowledge of the response and transfer function which describes the system, or the diagnosis of a disease
by computerized tomography. In all cases, the boundary conditions of these problems are not known or of difficult access.
The problem can be solved using information from sensors located at accessible points.

In direct problems of heat conduction, if the heat flux (the cause) is known, the temperature field (the effect) can then be
determined. Whereas for an inverse problem the heat flux is estimated from knowledge of the temperature at a location of
easy access. Thus experimental temperatures can be used to obtain: thermal properties, surface heat flux, an internal heat
source or the temperature at a surface without direct access, among others.

The main characteristic of the inverse heat conduction problem (IHCP) versus a well-posed direct heat conduction prob-
lem is that it leads to solutions that generally are not unique or stable to small changes in the given data [1].
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In literature, a variety of analytical and numerical approaches are proposed for the solution of inverse problems in heat
conduction. Based on the least squares method and Duhamel theorem, Beck et al. [2] developed the specified sequential
function method, which is still one of the techniques most used for solving inverse problems. The technique consists of suc-
cessive minimization of the error estimated for only the current time and some future time steps. The function specification
method has the two advantages that (a) it is simples in concept and (b) it does not change the physics of the problem, since
the intrinsic parabolic nature of the problem is unchanged. Some researchers have proposed adaptations of this method
seeking minimization of problems arising from the existence of measurement errors. The objective is to obtain greater sta-
bility of the algorithm as proposed by Keanini et al. [3]. In this case, Keanini et al. [3] proposed a modified method of the
specified sequential function to stabilize the solution for an inverse parabolic problem of heat conduction. The method uses
computational time steps which are larger than the small experimental sampling intervals as well as future time steps that
are equal to the sampling intervals.

The IHCP is difficult because it is extremely sensitive to measurement errors. Other important effects can be the presence
of the lag and damping on experimental data. Another problem that appears in IHCP is related to the time sample. For exam-
ple, the use of small times steps frequently introduces instabilities in the solution of the IHCP [4]. It can be observed that the
conditions of small time steps have the opposite effect in the IHCP compared to that in the numerical solution of the heat
conduction equation.

Tikhonov regularization and iterative regularization [5] are usually presented as whole domain methods in which all the
heat flux components are simultaneously estimated for all times (and position, if multidimensional). Two advantages of the-
se methods are that they have had rigorous mathematical investigation and can be applied very generally.

Another technique that uses regularization procedure is the conjugate gradient method with adjoint equation described
in detail in Alifanov [1] or Özis�ik and Orlande [6]. This technique is based on an optimization process using iterative regular-
ization, that is, the results of minimization of the objective function tend to stabilize in function of the number of iterations.
This methodology can be employed for the solution of linear and non-linear inverse problems, as well as problems of para-
meter estimation.

Lesnic et al. [7] present another way to solve IHCP. The procedure is to introduce the least squares, regularization and
energy method into the boundary element method (BEM) formulation. The discretization of the IHCP performed by using
the BEM has the advantage that no domain discretization is need as requested when using finite differences or finite ele-
ments. In this work, a solution of the one-dimensional, linear, inverse, unsteady heat conduction is a slab geometry is ana-
lyzed. Temperature measurements in time are taken with a sensor positioned at an arbitrary location within the solid
material.

There are several numerical optimization tools used for the solution of inverse problems. The golden section is one of the
most popular techniques for the estimation of maximum, minimum or zero of functions of only one variable [8].

It is possible to analyze heat conduction problems by making analogy to dynamic systems. In dynamic systems three vari-
ables are studied: the excitement, the transfer function and the system response. The problems are solved knowing two vari-
ables and estimating the third. In the case of inverse problems, from the knowledge of the transfer function the system and
its response (effect), the excitation (cause) is estimated. In this sense, more recently filters have been employed for solving
inverse heat transfer problems, such as Kalman filters and dynamic state observers. Blum and Marquardt [9] presented a
solution for an inverse heat transfer problem based on dynamic observers. The inverse problem was interpreted as a low
pass filter of real components of the real signal while rejecting the high frequency components to avoid excessive amplifi-
cation of the noise effect on estimation. The algorithm showed good results in one-dimensional problems.

Hensel [10] has discussed inverse solution techniques using analytical and transfer function. For example, he has present-
ed a temperature analytical solution for the direct problem as a function of an arbitrary transient heat flux (first appeared in
a report [11]). This solution has been obtained by using Laplace and Fourier transforms. This solution is then used to generate
simulated temperature measurement data at several interior points considering various types of heat flux shuch as, for
example, linear periodic square wave surface flux, linear triangular wave or linear impulse heat flux. After the inverse pro-
cedure, taking the first derivative of the direct solution with respect to x, the heat flux at any position in the solid can be
evaluated. Hensel [10] presents an inverse heat procedure for 1D case using a frequency domain adjoint algorithm. He takes
the Fourier transform of the governing equation and also takes two discrete internal measurements. In this case, the inverse
problem is solved numerically at each frequency by using the finite difference method. He argues that the finite difference
adjoint is analogous to the analytical problem and has great advantage of to be extended to multi-dimensional problems. It
can be mentioned here that analytical solution is used to obtain temperature measurement simulated and the direct solution
problem. The inverse technique uses space marching algorithm. Contrary to the method proposed here, that technique is
limited to interior data measurements and the analytical solution, as well the transfer function, are used only for obtaining
the solution of the direct problem.

Regarding the techniques presented, the specified function algorithm is of easy implementation and low computational
cost. However, it has not good stability when the presence of experimental noise is of large proportion [2] suffering the influ-
ence of local minima. As mentioned, a solution for minimizing these problems is to implement regularization techniques [2].
Another disadvantage of this algorithm is the high mathematical complexity of implementation when estimating heat flux
components with spatial and temporal variation. The technique of conjugate gradient with adjoint equation also shows
instabilities in the vicinity of local minima.
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