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a b s t r a c t

The dynamic stability problem of a viscoelastic nanobeam subjected to compressive axial
loading, where rotary inertia is taken into account, is investigated. The paper is concerned
with the stochastic parametric vibrations of a Voigt–Kelvin nanobeam based on Eringen’s
nonlocal elasticity theory of the Helmholtz and bi-Helmholtz type of kernel. The axial force
consists of a constant part and a time-dependent stochastic function. By using the direct
Liapunov method, bounds of the almost sure asymptotic stability of a viscoelastic
nanobeam are obtained as a function of retardation time, variance of the stochastic force,
geometric ratio, scale coefficients, and intensity of the deterministic component of axial
loading. Numerical calculations were done for the Gaussian and harmonic process. When
the excitation is a real noise process, the advanced numerical simulation based on the
Monte Carlo method is presented for moment Liapunov exponents numerical
determination.

� 2015 Published by Elsevier Inc.

1. Introduction

A simple model of a one-dimensional continuous structure made from nano materials and of nanometer dimension is
referred to as a nanobeam. Recently, it has been extensively utilized as nanostructure components for nanoelectromechani-
cal and microelectromechanical systems. The dynamic problems of single beams based on various theories have been
studied by many researchers.

Applications of the nonlocal continuum theory to nanotechnology were initially addressed by Peddieson et al. [1], who
analyzed the static deformations of beam structures based on the simplified nonlocal Eringen’s theory [2]. Lu et al. [3] used
the nonlocal Euler–Bernoulli and Timoshenko beam theory to study wave and vibration properties of the single- and double-
walled nanotubes. By using various nonlocal beam theories, analytical solutions of bending, vibration and buckling were
presented by Reddy [4]. The natural frequencies of the bending vibrations of a nanocantilever with linearly changed
cross-section were obtained by Aranda-Ruiz et al. [5]. A nonlocal viscoelastic constitutive model and external velocity-
dependent damping model to analyze the dynamic characteristics of Timoshenko beams with different boundary conditions
using the transfer function method was considered by Lei et al. [6]. Based on Rayleigh beam theory and by using the finite
element method, Chang et al. [7] derived the equations of motion of an axially moving beam. Floquet theory was employed
to investigate the effect of the axial-movement frequency on instantaneous natural frequencies and the stability of a
telescopically moving beam with time-dependent velocity. Size dependent behavior of electrostatically-actuated nano-beam
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considering vdW and Casimir forces was investigated by Mobki et al. [8]. The pull-in voltage, detachment length and natural
frequency were compared in both classic and modified couple stress theories for aluminum nano-beams.

By using Euler–Bernoulli and Timoshenko beam theories, dynamic instability of nanobeams subjected to time dependent
stochastic loading was treated by Tylikowski [9,10]. Direct Liapunov method is used for double-beam system dynamic
stability and instability analysis [11]. Influence of rotary inertia is investigated for viscoelastic symmetric cross-ply lami-
nated plates in [12], and rotating shafts in [13]. Asymptotic stability and almost sure asymptotic stability of a beam, taking
into account the effect of the nonlocal elasticity and damping and using the method of maximal Liapunov exponent, was
considered by Potapov [14].

The purpose of the present paper is to investigate the almost sure stability of a viscoelastic nanobeam as a function of
retardation time, variance of the stochastic force, geometric ratio, scale coefficient, and intensity of the deterministic
component of axial loading. The principal contribution of this paper is to clearly fix the boundaries of stability regions when
the influence of rotary inertia of the viscoelastic nanobeam is taken into account.

The present paper is organized as follows. According to the tensor notation, the nonlocal constitutive relations are given
in Section 2. A partial differential equation of transverse motion of a viscoelastic nanobeam based on Eringen’s nonlocal elas-
ticity theory for the Helmholtz and bi-Helmholtz type of kernel and Rayleigh beam theory is derived in Section 3. For the
governing differential equation of nanobeam, the definition of almost-sure stability problem is given in Section 4. For
non-white excitation by using Liapunov functional method, the conditions of almost-sure stability are obtained in
Section 5. When the viscoelastic nanobeam is subjected to real noise, in Section 6 stability analysis is performed by using
the proposed developed simulation based on the Monte–Carlo method. The numerical procedure of determining the bound-
aries of stability, as well as the analysis of obtained results, is given in Section 7. Section 8 ends the paper with concluding
remarks.

Contrary to papers [11–13], in this work the direct Liapunov method is applied in the nonlocal theory. Also, papers [12,13]
give the influence of rotary inertia in the function of the viscous damping coefficient for a Gaussian and harmonic process,
while here the same influence is given in the function of retardation time. Additionally, the analysis is presented for a
wideband real-noise process.

2. Nonlocal constitutive relations

The theory of Eringen [2] nonlocal elasticity in the integral formulation assumes that the stress at a given reference point
X is a function of the strain at all points X0 in the body, through a weighting kernel a jX0 � Xj

� �
tijðXÞ ¼

Z
V
a jX0 � Xj
� �

rijðX0Þ dV ; ð1Þ

where tij and rij are the nonlocal and local (classical) stress tensors, respectively. Eringen proposed the weighting kernel as a
Green function of a linear differential operator L as

La jX0 � Xj
� �

¼ d jX0 � Xj
� �

; ð2Þ

where d is the Dirac function. After applying Eq. (2) to Eq. (1), the integral forms of the nonlocal stress tensor are reduced to
the differential one

Ltij ¼ rij: ð3Þ

In Eringen’s [2] nonlocal elasticity of the Helmholtz and bi-Helmholtz type, linear operators L are, respectively

LH ¼ 1� �l2
0r2; LbH ¼ 1� �l2

1r2
� �

1� �l2
2r2

� �
; ð4Þ

where r2 is the Laplacian operator, and �l;
0 �l1 and �l2 are the nonnegative parameters of nonlocality. A detailed analysis of

nonlocal elasticity of the bi-Helmholtz type is given by Lazar et al. [15].

3. Nonlocal Rayleigh beam theory

Fig. 1 shows a uniform beam of length L subjected to transverse loading per unit length (q1on upper side and q2 on lower
one), and the axial compressive load H. X-axis is placed on beam axes, and transversal loadings are parallel with Z-axis. A
typical beam element is also shown in the figure (without the forces due to viscous damping).

The dynamic equilibrium of the element gives

qA
@2W

@T2 þ c1
@W
@T
¼ @V
@X
þ q;

qI
@2w

@T2 þ c2
@w
@T
¼ V � @M

@X
þ H

@W
@X

;

ð5Þ
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