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a b s t r a c t

In this paper, we introduce a new type neural networks by superpositions of a sigmoidal
function and study its approximation capability. We investigate the multivariate quantita-
tive constructive approximation of real continuous multivariate functions on a cube by
such type neural networks. This approximation is derived by establishing multivariate
Jackson-type inequalities involving the multivariate modulus of smoothness of the target
function. Our networks require no training in the traditional sense.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Feed-forward neural networks (FNNs) can be formally described as devices producing input–output functions depending
on flexible parameters. Often input–output functions have the form of linear combinations of functions computable by units
specific for the given type of networks. Both coefficients of the linear combinations and parameters of the computational
units are adjustable in the process of learning. Mathematically, the FNN can be represented by

XM

i¼1

cirðai � xþ biÞ; x 2 Rd; ð1:1Þ

where ai 2 Rd; ci 2 R; bi 2 R are the inner weight, outer weight, and threshold of the FNN, respectively.
Theoretically, any continuous functions defined on a compact set in Rd can be approximated by neural networks to any

desired accuracy by increasing the number of hidden neurons. This result is usually called the density problem of FNNs. This
problem has been tackled in [1–7] and references therein. Compared to the density problem, a related and more important
problem is the complexity: to determine how many neurons are necessary to yield a prescribed degree of approximation.
There have been many studies for this problem. We refer the readers to Anastassiou [8], Barron [9], Ferrari and Stengel
[10], Maiorov and Meir [11], Makovoz [12], Mhaskar and Micchelli [13] for more information about the complexity problem.

On the other hand, the Jackson-type inequality which describes the relation between the smoothness of the target func-
tion and the rate of approximation has been extensively used in approximation theory and neural networks. If the activation
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function r is analytic and non-polynomial, Mhaskar [14] proved that the Jackson-type inequality held for neural networks
formed as (1.1). If r is a sigmoidal function, i.e.,

lim
t!1

rðtÞ ¼ 1; lim
t!�1

rðtÞ ¼ 0;

then Chen [15] established a Jackson-type inequality for neural networks (1.1) with d ¼ 1. He also proposed an open ques-
tion that whether the Jackson-type inequality held for neural network (1.1) with d P 2 if r is sigmoidal. In the recent paper
[8], Anastassiou devoted to giving an answer to this question. However, he only proved that if the activation function is a
combination of sigmoidal function, then the Jackson-type inequality held. In this paper, we will give an answer to the above
question in another direction. We will prove that if we give a little change for the structure of neural networks by introducing
a distance based on a partition of the cube, then the multivariate Jackson-type inequality holds for the new type of neural
network with sigmoidal activation function.

This paper is organized as follows. In the next section, we will introduce a partition-based distance on and give the con-
struction of the neural networks. Our main result will be given in the third section, where a Jackson-type error estimates for
approximation by neural network will be given. In Section 4, we will verify our statement by two simulation experiments. In
the last section, we will draw a conclusion of this paper.

2. Construction of neural networks

In this section, we introduce a new type of neural networks. Let Id :¼ ½0;1�d. In [15], Chen proved that the neural networks
formed as

N�nðxÞ ¼ c0 þ
Xn�1

i¼1

cirðaixþ biÞ; ð2:1Þ

possessed prominent approximation capability when d ¼ 1 and r is a bounded sigmoidal function. An obvious extension for
this type of neural networks to multivariate case is

Nð1Þn ðxÞ :¼ c0 þ
Xn�1

i¼1

cirðai � xþ biÞ; ð2:2Þ

where x � y denotes the inner product between the vectors x and y. However, to the best of our knowledge, it is not very easy
to establish a Jackson-type inequality for such type of network if d P 2 and r is sigmoidal. The main reason is that there is
not a strict order for any points in Id when d P 2, but there are strict orders for approximation by neural networks [16]. So,
we turn to another type of extension of (2.1). For u ¼ 0, we have

aixþ bi ¼ aiðx� v iÞ ¼ aiððx� uÞ � ðv i � uÞÞ ¼ aiðdðx;uÞ � dðv i;uÞÞ;

where dðx; yÞ denotes the Euclidean distance between x and y. Thus, we can rewrite (2.1) as

N�nðxÞ ¼ c0 þ
Xn�1

i¼1

cirðaiðdðx;uÞ � dðv i;uÞÞÞ:

Noting this, we define

NnðxÞ :¼ c0 þ
Xn�1

i¼1

cirðaiðdðx;uÞ � dðvi;uÞÞÞ; ð2:3Þ

where dðx; yÞ is a partition-based distance between x and y which is introduced to guarantee the order for points in Id. Thus,
as far as the strict order is concerned, the special neural networks (2.3) is a more suitable extension of the univariate coun-
terpart (2.1). Based on this property, we can deduce a multivariate Jackson inequality for neural networks approximation,
which can be regarded as an extension of Chen’s [15] result. The proposed network Nnð�Þ can be interpreted as a model of
feed-forward neural networks with four layers:

� The first one is the input layer with the input x ðx 2 IdÞ.
� The second one is the pre-handling layer, which transform an input x into the partition-based distance between u and

x; dðx;uÞ.
� The third one is the handling layer with n neurons in it.
� The last one is the output layer.

Before giving a concrete definition for dð�; �Þ, we need give a division of Id. For the sake of brevity, we only study it for
d ¼ 2. Divide I2 into n2 small square with length 1

n ; Jk; k ¼ 1; . . . ;n2. Let x1; . . . ;xn2 be the centers of J1; . . . ; Jn2 , and
dðxk; xkþ1Þ ¼ 1

n. For example, if n is odd, then we have (see Fig. 1).
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