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a b s t r a c t

A new approach, namely the global residue harmonic balance method, was advanced to
determine the accurate analytical approximate periodic solution of a class of strongly
nonlinear oscillators. A class of nonlinear jerk equation containing velocity-cubed and
velocity times displacements-squared was taken as a typical example. Unlike other
harmonic balance methods, all the former residual errors are introduced in the present
approximation to improve the accuracy. Comparison of the result obtained using this
approach with the exact one and simplicity and efficiency of the proposed procedure.
The method can be easily extended to other strongly nonlinear oscillators.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The study of nonlinear problems is of great importance in all areas of Physics and Engineering. It is very difficult to solve
nonlinear problems and it is often more difficult to get an analytical approximation than a numerical one to a given nonlinear
problem. Considerable attention has been paid towards the study of strongly nonlinear oscillators and many methods have
been used to find approximate solutions to nonlinear oscillators [1–15]. In recent years, the nonlinear jerk equations involv-
ing the third temporal derivative of displacement have been widely studied [1–13]. As well as describing many mechanics,
nonlinear jerk equations are finding increasing importance in the study of physical problems, such as chaos [9–11].

Recently, many approximate methods were presented to determine analytical and approximate solutions to the nonlinear
jerk equations. Gottlied [1,13] has explored the flexibility of applying the method of harmonic balance to achieve analytical
approximate periodic solutions of nonlinear jerk equations. Wu et al. [2] proposed an improved harmonic balance method
for determining the periodic solutions of nonlinear jerk equations, and their second and third approximations give accurate
results for a large range of the initial velocity amplitude. Ma et al. [3] and Hu et al. [4] applied, respectively, homotopy per-
turbation and parameter perturbation to the jerk equations. Hu et al. [5] generalized the Mickens iteration procedure to
determine the periodic solution of nonlinear jerk equations. Ramos [6] obtained an accurate result by means of a second
Linstedt-Poincare method. Feng and Li [7] applied homotopy analysis to determine a class of jerk equation. Recently, Leung
et al. [8] used residue harmonic balance method to solve nonlinear jerk equations, and they obtained some more accurate
results. Many researchers have shown that residual error exerts a significant effect on the approximation accuracy [14,15].
But the residue harmonic balance method did not take all the residual error in their process of calculating the solutions.
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In this paper, we put forward a novel approximate method, namely the global residue harmonic balance method, to deter-
mine the periodic solutions of nonlinear jerk equations. To obtain higher-order analytical approximations, all the residual
errors are considered in the process of every order approximation. The technique is different from the residue harmonic bal-
ance which does not use all the residue. We can see this by the process of solution and a later example results, which are
given to illustrate the applicability and accuracy of the technique.

2. Basic ideas of the global residue harmonic balance approach

For the sake of simplicity, we have been considered systems governed by equations having the form

Uð€u; _u;uÞ ¼ 0; uð0Þ ¼ A; _uð0Þ ¼ 0; ð1Þ

where the over-dot denotes differentiation with respect to t. For convenience, we assume Eq. (1) is a conservative system [i.e.
Uð�€u;� _u;�uÞ ¼ �Uð€u; _u;uÞ].

Suppose x is the angular frequency of the Eq. (1) to be determined. With a new independent variable s ¼ xt, Eq. (1)
becomes

Uðx2u00;xu0;uÞ ¼ 0; uð0Þ ¼ A; u0ð0Þ ¼ 0; ð2Þ

where prime denotes the derivative with respect to s.
Considering the periodic solution does exist, it may be better to approximate the solution by such a set of base functions

fcosðð2k� 1ÞsÞjk ¼ 1;2;3; . . .g: ð3Þ

According to Eq. (3), the initial approximate periodic solution satisfying initial conditions in Eq. (2) is

u0ðsÞ ¼ AcosðsÞ; s ¼ x0t; ð4Þ

where x0 is an unknown constant to be determined later.
Substituting Eq. (4) into Eq. (2), it results the following residual

R0ðsÞ ¼ U x2
0u000;x0u00; u0

� �
: ð5Þ

If R0ðsÞ ¼ 0, then u0ðsÞ happens to be the exact solution. Generally such case will not arise for nonlinear problems.
The left hand side of Eq. (5) should not contain secular terms of cosðsÞ. Equating its coefficients to zero, we can determine

the unknown constant x0. Then, the zero-order approximation u0 is in the form of Eq. (4).
Based on the zero-order approximation Eq. (4) and the residual Eq. (5), we consider the following approximate periodic

solution and frequency

uðsÞ ¼ u0ðsÞ þ pu1ðsÞ; x2 ¼ x2
0 þ px1; ð6Þ

where p is the order parameter with values in the interval [0, 1].
Substituting Eq. (6) into Eq. (2) and equating the coefficients of the p, we can get

F1ðs;x1;u1ðsÞÞ , x1
@

@ðx2Þ þ u001
@

@u00
þ u01

@

@u0
þ u1

@

@u

� �
U0; ð7Þ

where @U0=@u denotes that @U=@u is to be evaluated at the zero-order approximation after differentiation etc. It is noted that
Eq. (7) is linear with respect to x1 and u1. Noting that the solution has the form of Eq. (3), we choose

u1ðsÞ ¼ a3;1ðcosðsÞ � cosð3sÞÞ: ð8Þ

Substituting Eq. (8) into Eq. (7), we consider the following equation

F1ðs;x1;u1ðsÞÞ þ R0ðsÞ ¼ 0: ð9Þ

All the residual errors of the zero-order approximation R0ðsÞ are introduced into Eq. (9) to improve the accuracy.
The right hand side of Eq. (9) should not contain the terms cosðsÞ and cosð3sÞ based on Galerkin technique. Letting their

coefficients be zeros, we obtain two linear equations containing two unknowns x1 and a3;1. Then the two unknown con-
stants can be solved easily. Thus, we get the first-order approximation

uð1ÞðsÞ ¼ u0ðsÞ þ u1ðsÞ; x2
ð1Þ ¼ x2

0 þx1; s ¼ xð1Þt; ð10Þ

where u0ðsÞ and u1ðsÞ are given by Eqs. (4) and (8) respectively.
Substituting Eq. (10) into Eq. (2), it results the following residual

R1ðsÞ ¼ Uðx2
ð1Þu

00
ð1Þ;xð1Þu

0
ð1Þ;uð1ÞÞ: ð11Þ

Owing to the nonlinearity, R1ðsÞ is in general nonzero. We will construct higher-order approximations based on the resid-
ual errors.
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