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a b s t r a c t

A parameter estimation method is devised for a slow–fast stochastic dynamical system,
where only the slow component is observable. By using available observations on the slow
component, a system parameter is estimated by studying the slow system on the random
slow manifold. This offers a benefit of dimension reduction in quantifying parameters in
stochastic dynamical systems. An example is presented to illustrate this method, and to
verify that the parameter estimator based on the lower dimensional, reduced slow system
is a good approximation of the parameter estimator for the original slow–fast stochastic
dynamical system.

Published by Elsevier Inc.

1. Introduction

Invariant manifolds provide geometric structures for understanding dynamical behavior of nonlinear systems under
uncertainty. Some systems evolve on fast and slow time scales, and may be modeled by coupled singularly perturbed sto-
chastic ordinary differential equations (SDEs). A slow–fast stochastic system may have a special invariant manifold called a
random slow manifold that captures the slow dynamics.

We consider a stochastic slow–fast system

_x ¼ Axþ f ðx; yÞ; xð0Þ ¼ x0 2 Rn; ð1:1Þ

_y ¼ 1
e

Byþ 1
e

gðx; yÞ þ rffiffiffi
e
p _Wt; yð0Þ ¼ y0 2 Rm; ð1:2Þ

where A and B are matrices, e is a small positive parameter measuring slow and fast scale separation, f and g are nonlinear
Lipschitz continuous functions with Lipschitz constant Lf and Lg respectively, r is a noise intensity constant, and fWt : t 2 Rg
is a two-sided Rm-valued Wiener process (i.e., Brownian motion) on a probability space ðX;F;PÞ. Under a gap condition and
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the dissipative condition (H1 and H2 in Section 2) for matrix B, for e sufficiently small, there exists a random slow manifold
ðn;heðn;xÞÞ, with heðn;xÞ : Rn ! Rm;x 2 X, as in [1,2], for slow–fast stochastic system (1.1) and (1.2). When the nonlinear-
ities f ; g are only locally Lipschitz continuous but the system has a random absorbing set (e.g., in mean-square norm), we
conduct a cut-off of the original system.

The random slow manifold is the graph of a random nonlinear mapping heðn;xÞ ¼ rgeðxÞ þ ~heðn;xÞ, with ~heðn;xÞ deter-
mined by a Lyapunov–Perron integral equation [1],

~heðn;xÞ ¼ 1
e

Z 0

�1
e�

B
esgðxðs;x; nÞ; yðs;x; nÞ þ rgeðhsxÞÞds; n 2 Rn;

here geðxÞ ¼ 1ffiffi
e
p
R 0
�1 e�B

es dWs and geðhtxÞ ¼ 1ffiffi
e
p
R t
�1 eB

eðt�sÞ dWs. The random slow manifold exponentially attracts other solution

orbits. We will find an analytically approximated random slow manifold for sufficiently small e, in terms of an asymptotic
expansion in e, as in [3,4]. This slow manifold may also be numerically computed as in [5]. Roberts [6] introduced a normal
form transform method for stochastic differential systems with both slow modes and quickly decaying modes, in order to
find the approximate formula for a slow manifold. Related works on the dynamics of stochastic differential equation or sto-
chastic center manifold include [7–10]. By restricting to the slow manifold, we obtain a lower dimensional reduced system of
the original slow–fast system (1.1) and (1.2), for e sufficiently small

_x ¼ Axþ f x; ~heðx; htxÞ þ rgðhtwexÞ
� �

; x 2 Rn; ð1:3Þ

where ht and we will be defined in the next section.
If the original slow–fast system (1.1) and (1.2) contains unknown system parameters, but only the slow component x is

observable, we conduct parameter estimation using the slow system (1.3). Since the slow system is lower dimensional than
the original system, this parameter estimator offers an advantage in computational cost, in addition to the benefit of using
only observations on slow variables.

This paper is arranged as follows. In the next section, we obtain an approximated random slow manifold and thus the
random slow system. Then in Section 3, we provide an error estimation for our parameter estimator, in terms of OðeÞ
(due to random slow reduction) and the observation error. Finally, we present a simple example in Section 4 to illustrate
our method.

2. Random slow manifold and its approximation

In order to use the reduced system to estimate a parameter, we firstly give some results on slow manifold and its approx-
imation [1,5,6,11], Roberts. The slow manifold is considered under a driving flow ðX;F;P; hÞ. Here ðX;F;PÞ is a probability
space. And h ¼ fhtgt2R is a flow on X which is defined as a mapping

h : R�X # X

satisfying

� h0 ¼ idX (identity mapping on X),
� hsht ¼ hsþt for all s; t 2 R, and
� the mapping ðt;xÞ# htx is ðBðRÞ �F;FÞ�measurable and htP ¼ P for all t 2 R.

By a random transformation

X

Y

� �
:¼Veðx; x; yÞ ¼

x

y� rgeðxÞ

� �
; ð2:1Þ

we convert the SDE system (1.1) and (1.2) to the following system with random coefficients

_XðtÞ ¼ AXðtÞ þ f XðtÞ; YðtÞ þ rgeðhtxÞð Þ; ð2:2Þ

_YðtÞ ¼ 1
e

BYðtÞ þ 1
e

g XðtÞ;YðtÞ þ rgeðhtxÞð Þ; ð2:3Þ

where geðxÞ ¼ 1ffiffi
e
p
R 0
�1 e�Bs

e dWs is the stationary solution of linear system dye ¼ B
e yedt þ rffiffi

e
p dWt . And ht : X! X is the Wiener

shift implicitly defined by WsðhtxÞ ¼WtþsðxÞ �WtðxÞ. Note that geðhtxÞ ¼ 1ffiffi
e
p
R t
�1 eB

eðt�sÞ dWs.

Define a mapping (between random samples) we : X! X implicitly by WtðwexÞ ¼ 1ffiffi
e
p WteðxÞ. Then 1ffiffi

e
p WteðxÞ is also a Wie-

ner process with the same distribution as WtðxÞ. Moreover, geðhtexÞ and geðxÞ are identically distributed with

gðhtwexÞ ¼
R t
�1 eBðt�sÞ dWsðwexÞ and gðwexÞ ¼

R 0
�1 e�Bs dWsðwexÞ, respectively.

By a time change s ¼ t=e and using the fact that geðhsexÞ and gðhswexÞ are identically distributed, the system (2.2) and
(2.3) is reformulated as
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