
Numerical solution of an inverse reaction–diffusion problem via
collocation method based on radial basis functions

F. Parzlivand, A.M. Shahrezaee ⇑
Department of Mathematics, Alzahra University, Vanak, Post Code 19834 Tehran, Iran

a r t i c l e i n f o

Article history:
Received 20 November 2013
Received in revised form 18 September 2014
Accepted 24 November 2014
Available online 12 December 2014

Keywords:
Radial basis functions
Collocation
Inverse parabolic problem
Scattered data
Interpolation problem

a b s t r a c t

In this paper, a numerical technique is presented for the solution of a parabolic partial dif-
ferential equation with a time-dependent coefficient subject to an extra measurement. This
method is a combination of collocation method and radial basis functions. The operational
matrix of derivative for radial basis functions is introduced and the new computational
technique is used for this purpose. The operational matrix of derivative is utilized to reduce
the problem to a set of algebraic equations. Some examples are given to demonstrate the
validity and applicability of the new method and a comparison is made with the existing
results.

� 2015 Published by Elsevier Inc.

1. Introduction

The parameter identification in a parabolic differential equation from the overspecified data plays an important role in
engineering and physics. This technique has been widely used to determine the unknown properties of a region by measur-
ing data only on its boundary or a specified location in the domain. These unknown properties, such as the conductivity
medium, are important to the physical process, but they usually cannot be measured directly, or the process of their mea-
surement is very expensive [1–3]. These problems are often ill-posed in the sense of Hadamard (see [4,5]), because the low
random errors in measurement can lead to major errors in identifications and a direct inversion of the data for the unknown
function is not possible [6]. As a result, a number of researchers have developed various methods to overcome the ill-posed
nature of the inversion problem. These methods include Born approximation [7], neural-networks [8] and Levenberg–Mar-
quardt method [9].

In this paper, authors are trying to solve an inverse problem to a class of reaction–diffusion equation using radial basis
functions (RBFs) as a truly meshless/meshfree method. A meshfree method does not require a mesh to discretize the domain
of the problem under consideration and the approximate solution is constructed entirely based on a set of scattered nodes. It
is considered as the main advantage of these methods over the mesh dependent techniques.

1.1. Reaction–diffusion systems

A reaction–diffusion equation comprises a reaction term and a diffusion term, i.e. the typical form is as follows:

ut ¼ r:ðDðu; x; tÞruÞ þ f ðu;ru; x; tÞ;
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where uðx; tÞ is a state variable and describes temperature/concentration of a substance at position x 2 X � Rn at time t (X is
an open set). D is the diffusion coefficient and f is the reaction term.

Reaction–diffusion systems are mathematical models which explain how the concentration of one or more substances
distributed in space changes under the influence of two processes: local chemical reactions in which the substances are
transformed into each other and diffusion which causes the substances to spread out over a surface in space. This description
implies that reaction–diffusion systems are naturally applied in chemistry. However, the system can also describe dynamical
processes of non-chemical nature. Examples are found in biology, geology, physics and ecology [10–12].

1.2. A class of reaction–diffusion systems

Here, we study the reaction–diffusion equation in one space dimension with Dðu; x; tÞ ¼ aðtÞ and
f ðu;ru; x; tÞ ¼ pðtÞuþ gðx; tÞ, as following:

ut ¼ aðtÞuxx þ pðtÞuþ gðx; tÞ; 0 < x < 1; 0 < t < T; ð1Þ

subject to the initial and boundary conditions:

uðx;0Þ ¼ u0ðxÞ; 0 6 x 6 1; ð2Þ

uð0; tÞ ¼ g0ðtÞ; 0 6 t 6 T; ð3Þ

uð1; tÞ ¼ g1ðtÞ; 0 6 t 6 T; ð4Þ

where T > 0 is constant and g, p, u0, g0 and g1 are known functions.
In the direct problem, diffusion coefficient aðtÞ is known function, so that the direct problem consists in finding uðx; tÞ in

the given domain whereas the discussed inverse problem consists in simultaneously finding uðx; tÞ and the unknown coef-
ficient aðtÞ.

Inverse problem of finding uðx; tÞ and the unknown coefficient aðtÞ is under-determined and we are forced to impose an
additional boundary condition, such that a unique solution pair ðu; aÞ is obtained. An additional boundary condition which
can be the additional specification at a point in the spatial domain (temperature additional specification) [13], is given in the
following form:

uðx�; tÞ ¼ EðtÞ; 0 6 t 6 T; ð5Þ

where E is known function and x� 2 ð0;1Þ is constant. Employing the condition (5), a recovery of the function aðtÞ together
with the solution uðx; tÞ can be made possible.

Therefore in this study, we solve the inverse problem (1)–(5).
Certain types of physical problems can be modeled by (1)–(5). One application is in the determination of the unknown

properties in a region by measuring only data on the boundary, and particular attention has been focused on coefficients that
represent physical quantities, for example, the conductivity of a medium. The methods used depend strongly on the type of
equations and variables on which the unknown coefficient is assumed a priori to depend. An important but difficult case is
when the unknown conductivity depends on the dependent variable of the solution u. For a heat flow problem, this has the
physical interpretation of a temperature dependent on conductivity. If, however, the spatial change in the function uðx; tÞ is
small in comparison with the change in time, then a reasonable approximation to this state of affairs may be to consider the
coefficient to be a function only of the time variable [14].

1.3. A brief review of other methods existing in the literature

The existence and uniqueness of the solution of this problem and more applications are discussed in [15–20]. However,
the theory of the numerical solution of this problem is far from satisfactory. Cannon [19] and Jones [21] reduced the problem
to a non-linear integral equation for the coefficient aðtÞ. This approach works well for parabolic equation in one space vari-
able but does not easily extend to higher-dimensional problems because it depends on the explicit form of the fundamental
solution of the heat operator. In [14], a backward Euler finite difference scheme was discussed. It is shown that this scheme is
stable in the maximum norm and error estimates for u and a, and some experimental numerical results are given. Authors of
[22] proved the solution of the problem for a connected domain in Rn. In [23], this problem was studied from a different
point of view. The authors first transformed a large class of parabolic inverse problems into a non-classical parabolic equa-
tion whose coefficients consist of trace type functional on the solution and its derivatives subject to some initial and bound-
ary conditions. For the resulted non-classical problem, they introduced a variational form by defining a new function and
then both continuous and discrete Galerkin procedures are employed to the non-classical problem. Author of [3] used the
several explicit and implicit finite difference methods to solve this problem. In [24], an efficient pseudospectral Legendre
method is developed to solve problem (1)–(5).

The authors of [25] applied the Adomian decomposition method to find solution of this problem. In [26], the numerical
solution is also considered by use of Chebyshev cardinal functions; the method consists of expanding the required
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