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a b s t r a c t

In this paper, we develop an accurate and efficient Chebyshev wavelets method for solution
of partial differential equations with boundary conditions of the telegraph type. In the
proposed method we have employed mutually the operational matrices of integration
and differentiation to get numerical solutions of such equations. The power of this manage-
able method is confirmed. Moreover the use of Chebyshev wavelet is found to be accurate,
simple and fast.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Wavelet methods have been applied for solving partial differential equations (PDEs) from the beginning of 1990s [1]. In
the last two decades this method of solution for such problems has attracted great attention and numerous papers about this
topic have been published. Due to this fact we must confine somewhat our analysis; in the following only PDEs of mathe-
matical physics and of electrostatics are considered. From the first field of investigation [2–7] can be cited. For elasticity
problems we refer to [8–14]. In these papers different wavelet families have been applied. In most cases the wavelet
coefficients have been calculated by the Galerkin or collocation method, for which we have to evaluate integrals of some
combinations of the wavelet functions. We consider the second order linear hyperbolic telegraph equation in one-dimension
of the following form:

@2u
@t2 þ 2a

@u
@t
þ b2u ¼ @

2u
@x2 þ f ðx; tÞ; a 6 x 6 b; t P 0; a > b > 0; ð1Þ

where a and b are known constants. This equation is commonly used in the study of wave propagation of electric signals in a
cable transmission line and also in wave phenomena. This equation has been also used in modeling the reaction–diffusion
processes in various branches of engineering sciences and biological sciences by many researchers (see [15] and references
therein). Moreover this equation represents a damped wave motion for a > 0 and b ¼ 0. In recent years, much attention has
been given in the literature to the development analysis and implementation of stable methods for the numerical solution of
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second-order hyperbolic equations, especially, telegraph equation, that is very important in engineering sciences (see for
example [15] and references therein). The aim of the present work is to develop Chebyshev wavelets method with the
operational matrices of integration and differentiation, mutually for solving partial differential equations with boundary
conditions of the telegraph type, which is fast and mathematically simple and guarantees the necessary accuracy for a rel-
ative small number of grid points. The outline of this article is as follows: In Section 2 we describe properties of Chebyshev
wavelets. In Section 3 the proposed method is used to approximate solution of the problem. In Section 4 some numerical
examples are solved by applying the method of this article. Finally a conclusion is drawn in Section 5.

2. Chebyshev wavelets and their properties

Chebyshev wavelets wn;mðtÞ ¼ wðk; n̂;m; tÞ have four arguments; k 2 N;n ¼ 1;2; . . . ;2k�1, and n̂ ¼ 2n� 1, moreover m is
the degree of the Chebyshev polynomial of the first kind and t is the normalized time i.e. t 2 ½0;1Þ. They are defined on
the interval ½0;1Þ as:

wn;mðtÞ ¼
2k=2~Tmð2kt � n̂Þ; n̂�1

2k 6 t < n̂þ1
2k ;

0; otherwise;

(
ð2Þ

where

~TmðtÞ ¼
1ffiffiffi
p
p ; m ¼ 0;ffiffiffi

2
p

q
TmðtÞ; m > 0;

8<
: ð3Þ

m ¼ 0;1; . . . ;M � 1, and M is a fixed positive integer. Here, fTmðtÞ;m 2 N [ f0gg is the set of well-known Chebyshev
polynomials of degree m which are orthogonal with respect to the weight function wðtÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

on the interval
[�1,1]. We should note that in dealing with Chebyshev polynomials the weight function ~wðtÞ ¼ wð2t � 1Þ have to be dilated
and translated as wnðtÞ ¼ wð2kt � n̂Þ to get orthogonal wavelets.

Any square integral function f ðtÞ defined over [0,1) may be expanded by Chebyshev wavelets as:

f ðtÞ ¼
X1
n¼1

X1
m¼0

cnmwnmðtÞ; ð4Þ

where cnm ¼ ðf ðtÞ;wnmðtÞÞ and (,) denotes the inner product.
If the infinite series in (4) is truncated, then (4) can be written as:

f ðtÞ ’
X2k�1

n¼1

XM�1

m¼0

cnmwnmðtÞ ¼ CTWðtÞ; ð5Þ

where C and WðtÞ are m̂ ¼ ð2k�1MÞ column vectors.
For simplicity, we write (5) as:

f ðtÞ ’
X̂m

i¼1

ciwiðtÞ ¼ CTWðtÞ; ð6Þ

where ci ¼ cnm; wiðtÞ ¼ wnmðtÞ.
The index i, is determined by the relation i ¼ Mðn� 1Þ þmþ 1. Therefor we have:

C, c1; c2; . . . ; cm̂½ �T ;
WðtÞ, w1ðtÞ;w2ðtÞ; . . . ;wm̂ðtÞ½ �T :

ð7Þ

Similarly, an arbitrary function of two variables uðx; tÞ defined over ½0;1Þ � ½0;1Þ, may be expanded into Chebyshev wavelets
basis as:

uðx; tÞ ’
X̂m

i¼1

X̂m

j¼1

uijwiðxÞwjðtÞ ¼ WTðxÞUWðtÞ; ð8Þ

where U ¼ ½uij� and uij ¼ wiðxÞ; uðx; tÞ;wjðtÞ
� �� �

.

Taking the collocation points ti ¼ ð2i�1Þ
2m̂ ði ¼ 1; . . . ; m̂Þ, in (7), we define the wavelet matrix Um̂�m̂ as:

Um̂�m̂ ¼ W
1

2m̂

� �
;W

3
2m̂

� �
; . . . ;W

2m̂� 1
2m̂

� �� �
: ð9Þ

Indeed Um̂�m̂ has a diagonal form [16].
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