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a b s t r a c t

This study analyzes the temperature fluctuations in incompressible homogeneous isotropic
turbulence through the finite scale Lyapunov analysis of the relative motion between two
fluid particles. The analysis provides an explanation of the mechanism of the thermal
energy cascade, leads to the closure of the Corrsin equation, and describes the statistics
of the longitudinal temperature derivative through the Lyapunov theory of the local
deformation and the thermal energy equation. The results here obtained show that, in
the case of self-similarity, the temperature spectrum exhibits the scaling laws jn, with
n � �5=3; �1 and �17=3��11=3 depending upon the flow regime. These results are in
agreement with the theoretical arguments of Obukhov–Corrsin and Batchelor and with
the numerical simulations and experiments known from the literature. The PDF of the lon-
gitudinal temperature derivative is found to be a non-gaussian distribution function with
null skewness, whose intermittency rises with the Taylor scale Péclet number. This study
applies also to any passive scalar which exhibits diffusivity.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

This work adopts the finite-scale Lyapunov theory for studying the temperature fluctuations in incompressible homoge-
neous isotropic turbulence in an infinite fluid domain. The study is mainly motivated by the fact that, in isotropic turbulence,
the temperature spectrum HðjÞ exhibits several scaling laws jn in the different wavelength ranges depending on R and Pr
[1–4], where R and Pr are Taylor scale Reynolds number and Prandtl number, respectively. This is due to the peculiar
connection between temperature fluctuations, fluid deformation and velocity field, whose effect varies following R and Pr.

For large values of R and Pr, [1,2] argumented, through the dimensional analysis, that HðjÞ � j�5=3 in the so-called iner-
tial-convective subrange (see Fig. 1). Batchelor [3] considered the isotropic turbulence at high Prandtl number, when R is
assigned. There, the author assumed that, at distances less than the Kolmogorov scale, the temperature fluctuations are
mainly related to the strain rate associated to the smallest scales of the velocity field. As the result, he showed that
H � j�1 in the so-called viscous-convective interval, a region where the scales are less than the Kolmogorov length (see
Fig. 1). Different experiments dealing with the grid turbulence [5,6] and calculations of the temperature spectrum through
numerical simulations (see [7] and references therein) confirm that HðjÞ follows such these scaling laws.

On the contrary, when Pr is very small, the high fluid conductivity determines quite different situations with respect to the
previous ones. Batchelor [4] analyzed the small-scale variations of temperature fluctuations in the case of large conductivity,
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and found that HðjÞ � j�17=3, whereas Rogallo et al. [8] calculated the temperature spectra through numerical simulations of
a passive scalar convected by a velocity field with zero correlation time. Rogallo et al. [8] showed that, when the kinetic energy
spectrum follows the Kolmogorov law EðjÞ � j�5=3, the temperature spectrum varies according to HðjÞ � jn, with
n � �11=3.

According to the experiments of grid turbulence, temperature and velocity correlations are linked with each other when
Pr ¼ Oð1Þ, whereas the decay rate and characteristic scales depend on the initial conditions. Specifically, Mills et al. [9]
obtained very important data about the air turbulence behind a heated grid. They carried out several measurements of nearly
isotropic fluctuations of velocity and temperature at different distances from the grid, and recognized that fh ’ f and p� ’ k,
where fh and f are temperature and velocity correlations respectively, p� is the triple correlation temperature–velocity, and k
is the longitudinal triple velocity correlation. Later, Warhaft and Lumley[10] experimentally showed that spectrum shape
and decay rate depend upon the initial conditions and that the mechanical–thermal time scale ratio tends to a value close
to the unity.

Other important characteristics of HðjÞ is the self-similarity. This is related to the idea that the combined effect of ther-
mal and kinetic energy cascade in conjunction with conductivity and viscosity, makes the temperature correlation similar in
the time. This property was theoretically studied by George (see [11,12] and references therein) which showed that the
decaying isotropic turbulence reaches the self-similarity, where HðjÞ is scaled by the Taylor microscale whose current value
depends on the initial condition. Recently, Antonia et al. [13] studied the temperature structure functions in decaying homo-
geneous isotropic turbulence and found that the standard deviation of the temperature, as well as the turbulent kinetic
energy, follows approximately the similarity over a wide interval of length scales. There, the authors used this approximate
similarity to calculate the third-order correlations and found satisfactory agreement between measured and calculated
functions.

Very important advances, regarding other properties of passive scalars in fully developed turbulence, were recently made
[14–19].

Fereday and Haynes [14] studied the decay in a large-scale flow and discussed the relation between the decay obtained by
the Lagrangian stretching theories and that calculated with the numerical simulations. Among the other things, the authors
determined that the PDF of a passive scalar exhibits algebraic tails, with an exponent of about �3 in a given interval of
dimensionless scalar concentration, with a cutoff due to the fluid diffusivity. For what concerns the decay models of a passive
scalar, Schekochihin et al. [15] analyzed the case with single-scale random velocity field, and showed that, if there exists sep-
aration between flow scale and the box size, the decay rate is the result of the turbulent diffusion of the box-scale. Later,
Doering and Thiffeault [16] studied the mixing efficiency of a passive scalar subject to a steady and inhomogeneous source,
advected by a statistically homogeneous and isotropic incompressible velocity field. The authors found that the mixing effi-
ciency is limited by the values of Pr R and by specific characteristics of the source, and that the scaling laws of the bounds at
high Pr R depend on the length scales of the source. Tran [17], in an article dealing with the scalar diffusion in shear flows,
determined an upper bound for the decay rate of the temperature standard deviation in the case of shear flows with bounded
velocity gradients, where the initial temperature distribution is supposed to be a smooth function of the space co-ordinates.
Thereafter, Tran [18] analyzed the evolution of the temperature gradient and showed, thanks to the hypothesis of finite
velocity gradient, that the square of temperature gradient and its decay rate are both bounded. Next, Burton [19] extended
the nonlinear large-eddy simulation method to conditions with moderate and very high Schmidt numbers, and, among the
other things, provided the instantaneous field of scalar-energy at viscous-convective scales at high Schmidt-numbers.

From a theoretical point of view, the properties of HðjÞ can be investigated through its evolution equation. HðjÞ is the
Fourier-Transform of fh which varies according to the Corrsin equation [20]. This latter includes G, a term responsible for the

Fig. 1. Scheme of the subranges of the temperature spectrum at high Prandtl numbers.
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