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a b s t r a c t

Our analysis focuses mainly on coherent systems and series connection of k-out-of-n
standby subsystems with exponentially distributed component lifetimes. We analyze sys-
tem reliability, mean time to failure, and steady-state availability as a function of the com-
ponent failure rates. Our primary objective is provide explicit expressions for these
performance measures and obtain various characterizations on their mathematical struc-
tures. This primarily involves difference of convex functions which are known to be very
useful in the context of optimization problems.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, the primary objective is to analyze reliability, mean time to failure (MTTF), and steady-state availability of
coherent systems (CS) and series connection of k-out-of-n standby subsystems (SR) with exponentially distributed compo-
nent lifetimes. The maintenance policy is such that all failed components are replaced by brand new ones only when the
whole system fails. Since the lifetimes are exponentially distributed, the system is as good as brand new after a replacement.
Moreover, we presume that the repair times depend on the state of the system (number and type of working and failed
components) at the time of failure.

We want to point out that this paper came out as a by-product of a research project on the component testing problem of
mission-based systems. The component testing problem for any system basically involves the hypothesis testing problem

H0 : RðkÞ 6 R0 H1 : RðkÞP R1; ð1Þ

where RðkÞ is the performance measure of the system (like reliability, MTTF, and steady-state availability) as a function of the
unknown component failure rates given by k. Here, R1 is a desired acceptable performance level and R0 is an unacceptable
performance level with R0 < R1. The problem is to design a statistical testing procedure on the system components that sat-
isfies given requirements on the type I and type II error probabilities at minimum cost. In particular, if tj is the total amount
of time for which component j should be tested, then the decision problem is stated as
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min
X

j

cjtj; ð2Þ

subject to the conditions

P Reject H0jH0f g 6 a; ð3Þ

P Reject H1jH1f g 6 b; ð4Þ

where cj is the cost of testing component j per unit time, a and b are the required type I and type II error probabilities respec-
tively. In other words, the problem is to determine the optimal testing durations of the components at minimum cost while
the reliability of the testing procedure is at an acceptable level.

Component testing is done when it is very costly or often impossible to test the whole system. Aircrafts used in space
missions or nuclear devices are typical examples where various performance measures associated with the devices can
be predicted using data on component lifetimes. In the component testing literature, it is generally assumed that component
lifetimes are exponentially distributed and one has to find explicit expressions for the performance measure as a function of
the unknown component failure rates. Using this explicit structure, one can make a semi-infinite linear programming for-
mulation and solve it by using an efficient algorithm to find the optimal solution. We refer the reader to Altınel et al. [1]
and Yamangil et al. [2] for details and examples regarding the component testing problem. The algorithms used in the solu-
tion stage use some structural properties like convexity of the performance measure as a function of the failure rates. Our
effort in the present setting covers the MTTF and steady-state availability in addition to the reliability of the system, which
is the commonly used performance measure in all of the component testing literature. The objective is to find explicit func-
tions for these measures and identify their structural properties that may be used in an optimization context. Another line of
research in which our results may be useful concerns Bayesian analysis of reliability systems. In Bayesian applications, the
component failure rates are not assumed to be known; rather, they are random variables with some prior distributions. The
explicit structure of the reliability and other functions as a function of the failure rates will be helpful in conducting posterior
analysis.

The analysis in this paper first focuses on the reliability and MTTF of CS where we obtain difference of convex (DC) rep-
resentations of these measures. Although this analysis is not mathematically complicated, the DC characterization is very
important since optimization models involving DC functions can be solved efficiently as stated in Horst and Thoai [3]. Then,
we analyze the reliability and MTTF of SR under three different standby redundancy structures, namely cold (CSR), warm
(WSR), and hot (HSR) standby redundancy. We show that the reliability and MTTF of SR are DC, and give explicit DC repre-
sentations for the reliability and MTTF of HSR assuming that all components in a subsystem are identical. Moreover, it is also
shown that the MTTF of CSR is a ratio of posynomials (RP) with positive integer powers. This result is also useful in solving an
optimization model including MTTF of an CSR since the natural logarithm of an RP function can be transformed into a DC
function, which is good news in solving the optimization problem. Then, we discuss the steady-state system availability
for CS and SR, and propose closed-form expressions by using a renewal theoretic approach. Finally, we show that the
steady-state availability of CS and SR are both RP with positive integer powers if the repair durations are also exponentially
distributed.

There is a huge amount of literature on coherent structures. Most of these papers assume that whenever a component
fails, it is repaired and all components are maintained separately. The distribution of the time to failure is analyzed by Barlow
and Proschan [4] and Brown [5], and formulas for the interval availability, and the expected number of failures and replace-
ments in a fixed interval are given by Baxter [6]. In our setting, we analyze a different system where failed components wait
for the failure of the system to be replaced.

Systems with a k-out-of-n structure attract special attention in the reliability literature because they have a very broad
application area. The MTTF for k-out-of-n systems is analyzed by Angus [7], and the mean operating and repair times
between two successive breakdowns, the system availability and some mean first-passage times are studied by Iyer [8].
Moreover, Li et al. [9] give formulas for the mean time between failures, mean working time in a failure-repair cycle and
mean down time in a failure-repair cycle. In these studies, it is assumed that all lifetimes and repair times are exponentially
distributed, there are enough repairmen for all components, and replacement for a component starts immediately after its
failure.

The availability and mean time between failures for k-out-of-n systems with M cold standby units that are either identical
or non-identical to active components are investigated by Wang and Loman [10]. The availability, the expected up-time, and
the expected down-time for a k-out-of-n system with general lifetimes and exponential repair times or vice versa are dis-
cussed by Frostig and Levikson [11] using Markov renewal processes. The references listed above assume that the repair
of a malfunctioning component starts immediately after its failure. A k-out-of-n system in which failed components are
not repaired until system failure is analyzed by Kouckỳ [12], and a closed form reliability formula is derived for a quite gen-
eral system. Moreover, de Smidt-Destombes et al. [13] analyze the availability of a k-out-of-n system with identical compo-
nents whose maintenance is initiated when the number of failed components exceeds a critical level. Several efficient
algorithms to compute various reliability and availability indices for k-out-of-n systems with arbitrary failure and repair dis-
tributions can be found in the paper by Amari et al. [14]. In this paper, we present reliability and mean time to failure results
for a model which extends the previous studies to series connection of k-out-of-n subsystems. However, for the sake of a
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