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a b s t r a c t

This paper presents an analytical layer-element solution to non-axisymmetric consolida-
tion of multilayered poroelastic materials with anisotropic permeability and compressible
constituents. By applying Fourier expansions, Hankel transforms and Laplace transforms to
the state variables involved in the governing equations of poroelasticity with respect to the
circumferential, radial and time coordinates, respectively, the analytical layer-element (i.e.
a symmetric stiffness matrix) is derived, which describes the relationship between the
transformed generalized stresses and displacements at the surface (z = 0) and those at an
arbitrary depth z, considering the corresponding boundary and continuity conditions at
the layer interfaces, the global stiffness matrix of a multilayered system is assembled in
the transformed domain. The actual solutions in the physical domain are acquired by
applying numerical quadrature schemes for the inversion of the Laplace–Hankel transform.
Finally, numerical calculation is presented to investigate the influence of layering and
poroelastic material parameters on consolidation process.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The study of the consolidation process of poroelastic materials in geomechanics has been a subject of great interest and
an object of numerous investigations [1–12]. However, most of this research simplistically considered the effect of the prop-
erties of the porous material and its filled pore fluid on the consolidation process, since an isotropic poroelastic system with
incompressible constituents and isotropic permeability was assumed and analyzed. As we know from practice, the typical
deposit process of natural geomaterials may lead to an enormous difference in permeability between different directions,
especially for the horizontal and vertical permeability, whose difference may be an order of magnitude or even more. Thus,
considering the effect of anisotropic permeability on the consolidation process of poroelasticity has practical significance
[13–19]. On the other hand, for several problems such as soil with high saturation degree, saturated porous rock encountered
in geomechanics and energy resource explorations, the compressibility of constituents should not be ignored as well [20–
26]. Reviewing the past achievements, few studies considering the anisotropy of permeability and the compressibility of
constituents at the same time are conducted on the consolidation of poroelastic medium. Booker and Carter [27] analyzed
the rate of consolidation with a point sink in an elastic half space by considering the anisotropy of permeability and the com-
pressibility of pore fluid, Chen [28] used the state vector method to analyze the axisymmetric consolidation of a layered half
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space with anisotropic permeability and compressible pore fluid, however, both of them did not investigate the effect of the
compressibility of the solid skeleton on the solid behavior. From the viewpoint of generality, a further extension of their
solutions to cover all the aspects of the material properties mentioned above is still needed. At present, a relatively compre-
hensive investigation may refer to Singh et al. [29–30], who studied the plane strain and axisymmetric consolidation prob-
lems, in which the compressibility of constituents (both of the pore fluid and the solid skeleton) and anisotropy of the
permeability were discussed.

The present paper aims to extend the studied problem by Singh et al. [29–30] to a more complex non-axisymmetric con-
solidation problem, in which the anisotropic permeability, compressibility of the constituents, and stratification of the mate-
rial are all considered. To analyze multilayered structures, many theories or methods may be worth studying, such as the Zig-
Zag theories for stratified plates and shells [31], finite layer method [7–9] and transfer matrix approach [10–12,25,26,28,32]
for elastic and poroelastic media. In this paper, the analytical layer-element method [19] is utilized for its efficiency and sta-
bility in numerical calculation. In order to derive the solution for the studied problem, a new derivation method is employed
to solve the basic equations of Biot’s consolidation with anisotropic permeability and compressible constituents, which can
greatly simplify the solution derivation. With the help of Fourier expansion, Hankel transforms and Laplace transforms with
respect to the circumferential, radial and time coordinates, the analytical layer-element of a single material layer is obtained
in the transformed domain. Then, by employing appropriate boundary and continuity conditions at layer interfaces, the glo-
bal stiffness matrix is assembled and solved. Once the solutions in the transformed domain are obtained, the actual solutions
in the physical domain can be acquired by the inversion of the Laplace–Hankel transform. In order to check the accuracy of
the numerical procedure, the presented solutions are compared with the results existing in Rajapakse and Senjuntichai [22].
After that, selected examples are given to analyze the effect of different material parameters on the response of
consolidation.

2. Governing equations

With neglect of the body forces, the Navier equations in the cylindrical coordinate system can be written as follows [20]:
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Bð1�2vÞð1þvuÞ is the Biot–Willis coefficient, and B is the Skempton’s

pore pressure coefficient [33], here v is the drained Poisson’s ration, vu is the undrained Poisson’s ratio whose range is [v ,1].
The range of a and B are [0,1]. When a ¼ 1, the system is simplified to soil with incompressible solid constituents. If
a ¼ 1;vu ¼ 0:5 or B ¼ 1;vu ¼ 0:5, the system is simplified to soil with incompressible constituents; G is the shear modulus;
p is the pore pressure (positive under compression).

Applying the operators @
@r þ 1

r

� �
, 1

r
@
@h and @

@z to the Eqs. (1a)–(1c), respectively, we can get the following equations:

r2 @

@r
þ 1

r

� �
ur þ

@2

@r2 þ
1
r
@

@r

 !
1

1� 2v e� a
G

p
� �

� 2
r3

@2ur

@h2 �
2
r2

@2

@r@h
� 2

r3

@

@h

 !
uh ¼ 0 ð2aÞ

r2 1
r
@uh

@h

� �
þ 1

r2

@2

@h2

1
1� 2v e� a

G
p

� �
þ 2

r2

@2

@r@h
� 2

r3

@

@h

 !
uh ¼ 0 ð2bÞ

r2 @uz

@z

� �
þ @2

@z2

1
1� 2v e� a

G
p

� �
¼ 0 ð2cÞ

Constitutive equations can be taken in the form:

rij ¼ 2G eij þ
v
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where rij is the total stress component of the soil; eij is the strain component, dij is the Kronecker delta.
The mass conservation law is given by:
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