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a b s t r a c t

In this paper, our aim is to study the high order finite difference method for the reaction
and anomalous-diffusion equation. According to the equivalence of the Riemann–Liouville
and Grünwald–Letnikov derivatives under the suitable smooth condition, a second-order
difference approximation for the Riemann–Liouville fractional derivative is derived. A
fourth-order compact difference approximation for second-order derivative in spatial is
used. We analyze the solvability, conditional stability and convergence of the proposed
scheme by using the Fourier method. Then we obtain that the convergence order is
Oðs2 þ h4Þ, where s is the temporal step length and h is the spatial step length. Finally,
numerical experiments are presented to show that the numerical results are in good agree-
ment with the theoretical analysis.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Fractional differential equations have attracted increasing interest due to its playing a significant role in neurons, control,
electromagnetism, biophysics, physics, regular variation in thermodynamics, mathematical, mechanics, signal and image
processing, blood flow phenomena, etc. [1–5].

It is well known that it is difficult to find the analytical solutions of the fractional differential equations. Therefore, seeking
numerical methods is an important task in the studies of fractional differential equations. In recent years, there have existed
various numerical methods for fractional differential equations, for instance, finite difference method [6–14], finite element
method [15–17], and so on.

In this paper, we numerically study the following reaction and anomalous-diffusion equation [18,19]:

@uðx; tÞ
@t

¼ RLD1�a
0;t Ka

@2uðx; tÞ
@x2 � Cauðx; tÞ

 !
þ f ðx; tÞ; a 2 ð0;1Þ; 0 < t 6 T; 0 < x < L; ð1Þ

subject to the initial, boundary value conditions

uðx;0Þ ¼ 0; 0 6 x 6 L;

http://dx.doi.org/10.1016/j.apm.2013.12.002
0307-904X/� 2014 Elsevier Inc. All rights reserved.

q This work was partially supported by the National Natural Science Foundation of China (Grant No. 11372170), the Key Program of Shanghai Municipal
Education Commission (Grant No. 12ZZ084), the grant of ‘‘The First-class Discipline of Universities in Shanghai’’, and the grant of ‘‘085 Project of Shanghai’’.
qq This article belongs to the Special Issue: Topical Issues on computational methods, numerical modelling & simulation in Applied Mathematical Modelling.
⇑ Corresponding author. Tel.: +86 2166135655; fax: +86 2166133292.

E-mail address: lcp@shu.edu.cn (C. Li).

Applied Mathematical Modelling 38 (2014) 3802–3821

Contents lists available at ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier .com/locate /apm

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apm.2013.12.002&domain=pdf
http://dx.doi.org/10.1016/j.apm.2013.12.002
mailto:lcp@shu.edu.cn
http://dx.doi.org/10.1016/j.apm.2013.12.002
http://www.sciencedirect.com/science/journal/0307904X
http://www.elsevier.com/locate/apm


uð0; tÞ ¼ u1ðtÞ; 0 6 t 6 T;

uðL; tÞ ¼ u2ðtÞ; 0 6 t 6 T;

where RLD1�a
0;t denotes the Riemann–Liouville derivative of order 1� a defined by Podlubny [4]

RLD1�a
0;t uðx; tÞ ¼ 1

CðaÞ
@

@t

Z t

0

uðx; sÞ
ðt � sÞ1�a ds;

Ka and Ca are two positive constants, f ðx; tÞ, u1ðtÞ and u2ðtÞ are sufficiently smooth functions.
Upto now, some numerical methods are available for the reaction and anomalous-diffusion equation with the case Ca ¼ 0.

For example, Yuste and Acedo [20] proposed an explicit finite difference method, where the order of convergence was
Oðsþ h2Þ. In [21], Yuste proposed the weighted average finite difference method, where for different weighted parameter
k, he got different convergence order. Chen et al. [22] presented an implicit scheme, in which the order of convergence
was Oðsþ h2Þ. Cui [23] obtained an unconditionally stable finite difference scheme, in which the order of convergence
was Oðsþ h4Þ . For the above Eq. (1), Chen et al. [24] proposed the implicit and explicit finite difference schemes, and got
the convergence with the order Oðsþ h2Þ. Very recently, Ding and Li [25] constructed a class of numerical methods and ob-
tained different convergence orders by choosing different spline parameters. From the references available, it seems easy to
increase the accuracy in spatial direction but difficult to increase the accuracy in time direction. In the present paper, a high-
er order approach in time direction for the numerical treatment of Eq. (1) is derived.

The outline of the rest of this paper is organized as follows. In Section 2, a numerical method for solving the reaction and
anomalous-diffusion equation is proposed. The solvability, stability and convergence are analyzed in Sections 3 and 4,
respectively. In Section 5, numerical experiments are carried out to support the theoretical analysis. And the conclusion is
included in the last section.

2. Numerical method

In this section, we present an effective numerical method to simulate the solution of the reaction and anomalous-diffu-
sion (1).

To establish the numerical scheme for the above Eq. (1), we let xi ¼ ih ði ¼ 0;1; . . . ;MÞ and tk ¼ ks ðk ¼ 0;1; . . . ;NÞ, where
h ¼ L

M and s ¼ T
N are the uniform spatial and temporal step sizes respectively, and M; N are two positive integers.

Firstly, using the Taylor series expansion at point ðxi; tkÞ, one gets

uðxi; tkþ1Þ ¼ uðxi; tkÞ þ s @uðxi; tkÞ
@t

þ s2

2
@2uðxi; tkÞ

@t2 þ � � � ¼ I þ s @
@t
þ s2

2
@2

@t2 þ . . .

 !
uðxi; tkÞ ¼ exp s @

@t

� �
uðxi; tkÞ; ð2Þ

where I is the identity operator.
For exp s @

@t

� �
, we can use the following ð1;1Þ Padé approximation

exp s @
@t

� ����� ���� ¼ 2I þ s @
@t

� �
2I � s @

@t

� ��1
�����

�����þOðs3Þ: ð3Þ

Applying the Taylor series expansion at point ðxi; tkÞ (or using (2)), one can obtain

1
2
@uðxi; tkÞ

@t
þ @uðxi; tkþ1Þ

@t

� �
¼ 1

s
uðxi; tkþ1Þ � uðxi; tkÞ½ � þOðs2Þ;

which can be rewritten as the following compact form

I þ 1
2

Dt

� �
@uðxi; tkÞ

@t
¼ 1

s
Dtuðxi; tkÞ þOðs2Þ; ð4Þ

where Dt denote forward difference operator with respect to t, defined by Dtuðxi; tkÞ ¼ uðxi; tkþ1Þ � uðxi; tkÞ.
Secondly, we focus on an approximation for the Riemann–Liouville derivative. Due to the equivalence between Riemann–

Liouville derivative and Grünwald–Letnikov derivative under smooth condition, we usually approximate the Riemann–Liou-
ville derivative by using the following Grünwald–Letnikov formula if the homogeneous condition satisfies:

RLD1�a
0;t uðx; tÞ ¼ 1

s1�a

Xt
s½ �

j¼0

-ð1�aÞ
1;j uðx; t � jsÞ þOðsÞ; ð5Þ

where t
s

	 

denotes the integer part of t

s, the coefficients are

-ð1�aÞ
1;j ¼ ð�1Þj

1� a
j

� �
¼ ð�1Þj Cð2� aÞ

Cðjþ 1ÞCð2� a� jÞ ; j ¼ 0;1; . . .
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