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a b s t r a c t

Power law (PL) distributions have been largely reported in the modeling of distinct real
phenomena and have been associated with fractal structures and self-similar systems. In
this paper, we analyze real data that follows a PL and a double PL behavior and verify
the relation between the PL coefficient and the capacity dimension of known fractals. It
is to be proved a method that translates PLs coefficients into capacity dimension of fractals
of any real data.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Power law (PL) distributions, also known as heavy tail distributions, firstly appeared in the literature in the 19th century.
In 1896 [1], Vilfredo Pareto applied a PL to model the distribution of individuals’ incomes (this PL was later called Pareto
law). He found that the relative number of individuals with an annual income larger than a certain value x was proportional
to a power of x. From then on, studies of applications of PLs to real world phenomena have largely increased.

The most well known examples of PL distributions are the Pareto [1] and the Zipf [2,3] laws. The later is also known as
rank-size rule. Let X be a non-negative discrete random variable following a PL distribution. Then, its complementary cumu-
lative distribution function is of the form FðxÞ ¼ PðX P xÞ ¼ C

a�1 x�ða�1Þ, where a > 0; C > 0. In the text, we will consider

~a ¼ a� 1 and eC ¼ C
~a. The probability function of a discrete random variable following Pareto distribution is given by:

PðX ¼ xÞ ¼ Cx�a ð1Þ

Zipf law is a special case of the Pareto law with exponent ~a ¼ 1.
Application of PL behavior in natural or human-made phenomena usually comes with a log–log plot, where the axes

represent the size of an event and its frequency. The log–log plot is asymptotically a straight line with negative slope. We
can consider, for example, a country, such as United States (US) or Portugal (PT), and order the cities by population. In
the case of US, New York appears first, Los Angeles, second, and so on. Analogously for PT, Lisbon is the first, Oporto the
second. Then, we can plot the logarithm of the rank on the y-axis and the logarithm of the city size on the x-axis. New York
and Lisbon both have log rank ln 1, and Los Angeles and Oporto have log rank ln 2. The graphs are straight lines with negative
slopes. The same thing happens for popularity. We all know that popularity is an extreme imbalanced phenomenon. Only a
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few people have access to the glare of the spotlight and fewer still manage that his/her name be recorded in history. Most of
us go through life being known just to the people in our social circle. How is popularity related to city sizes? They have in
common the power law behavior, that is, exhibiting, in a log–log scale plot, a straight line. In fact, power laws seem to reign
in the study of phenomena where popularity of some kind is present. Another such example is popularity of web sites. It is
found that the number of web pages that have k in-links follows a PL distribution [4]. The usefulness of PLs can be at the level
of controlling the outcome of some phenomena. For example, in computer networks. Some typical behavior in these net-
works is individual agents acting in their own best interest, giving rise to a global power law. This can be changed by giving
agents incentives to modify their conduct. Of course this type of strategy would not apply to earthquakes. Nevertheless, it
could be used in an extremly important event, such as stock markets. Gopikrishnan et al. [5] described a PL behavior of stock
market returns. Thus, comprehending PLs may be key to the understanding of stock market crashes [6], and many other
important real life events. More examples are in wealth distribution and expenditure [7,8], city size distribution [9,3,10],
number of articles’ citations and scientific production [11,12], number of hits in webpages [4], number of victims in wars,
terrorist attacks, and earthquakes [13–18], words’ frequency [19,3] and occurence of personal names [20]. Interesting re-
views on PL behavior and applications can be found in [21–23].

Most of the PLs application seen in the literature use a single PL to model the studied events. Nevertheless other PLs, such
as double PLs also appear and are said to be a better fit in some cases [24–27].

Detecting or proving the existence of a PL behavior in natural or human-made systems can be a very difficult task. The
modeling of PLs has been primarily theoretical. A different approach to find a more complete model should consider contri-
butions from statistics, control theory, and economics [28].

Self-similar systems are characterized by being scale-free. This translates, in day-to-day English, in looking exactly the same,
despite a closer or a more distant look. Fractals are ubiquitous in nature, appearing everywhere, from plant structures, body
parts, such lungs, coastlines, mountain ranges, condensed-matter systems including polymers, composite materials, porous
media, and other natural phenomena [29–32]. Self-similarity, self-invariance and fractal dimension are properties of fractals.

Mandelbrot [33], in 1982, wrote that.
Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning

travel in a straight line.
Mandelbrot turned mathematicians, physicists, biologists, and other scientists’, attentions to fractal patterns. The term

‘‘fractal dimension’’ [34] is frequently defined as the exponent D of the expression (2) given by:

nð�Þ ¼ k��D ð2Þ

where n is the minimum number of open sets of diameter � needed to cover the set and k is a constant that depends on the
fractal size. This is also known as the capacity dimension of the fractal. There are other dimensions used to characterize frac-
tals, being the Hausdorff’s and Kolmogorov’s dimensions, the ones that are more accurate, but also harder to use. Computing
the fractal dimension of the length of a country’s coastline is an extremely difficult task, that depends on the length of the
ruler used in the measurements. The shorter the ruler the bigger the length, since a shorter ruler measures more accurately
the sinuosity of bays and inlets. Doing a log–log plot of the length of the ruler s versus the measured length L of the coastline,
a straight line, with slope between 1 and 2, is obtained. Mandelbrot computed this slope to be 1� D, so the analytical expres-
sion of the straight line is log L ¼ ð1� DÞ log sþ b. Last expression can be rewritten as L ¼ ~bs1�D, that is a PL, and b ¼ log ~b 2 R.
This feature suggests an analogy between any phenomenon characterized by a PL distribution and the fractal dimension,
having for the variables in the x- and y-axes the same role as � and nð�Þ, and for the PL slope the fractal dimension D.
One can say that ~a is analogous to D and, therefore, we can interpret the phenomenon in the perspective of geometric frac-
tals. For example, if for a real case the PL reveals ~a ’ 0:63, one may say that the phenomenon has, in some way, similarities
with the ternary Cantor fractal, whose fractal dimension is D ¼ log 2= log 3 and that each object, or entity, in the phenome-
non, is related with two smaller objects having 1=3 the size each. Nevertheless, during the flow of recursion situations, the
recursion scheme may vary. In that case the log–log plot changes and the different slopes reflect the distinct recursive laws.
We will return to this subject with an example in Section 4.

PLs are extremely important in the study of systems that are self-similar or fractal-like over many orders of magnitude. PL
behavior allows extrapolation and prediction over a wide range of scales. The study of scaling reveals itself as a powerful tool
of simplifying systems complexity and of understanding the basic principles ruling those systems. Moreover, experimental
data from self-similar systems cannot be described by any other statistical distributions, as Normal or exponential, since or-
der in complex systems relies heavily on correlations between different levels of scale. For the sake of completeness, we re-
mark that recently, work by Sornette [35] has driven attention to a new type of extreme events, labeled dragon-kings, that
could not be predicted by the extrapolation of power law distributions. The detection of these wild events or outliers depends
on the phenomena that is under observation, there is not a unique methodology to find them. Nevertheless, this is not the
focus here in this work.

2. Fatal events

Understanding victimology patterns arising in fatal events, such as wars, terrorists attacks and tornadoes, is extremely
important due to political, cultural, historical and geographical issues. Many researchers have attempted explanations in
the last decades [13,14,36,15–17,37,18]. Nevertheless, understanding these patterns is still far from complete.
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