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a b s t r a c t

A new line search method is introduced for solving nonlinear equality constrained optimi-
zation problems. It does not use any penalty function or a filter. At each iteration, the trial
step is determined such that either the value of the objective function or the measure of the
constraint violation is sufficiently reduced. Under usual assumptions, it is shown that every
limit point of the sequence of iterates generated by the algorithm is feasible, and there
exists at least one limit point that is a stationary point for the problem. A simple modifica-
tion of the algorithm by introducing second order correction steps is presented. It is shown
that the modified method does not suffer from the Maratos’ effect, so that it converges
superlinearly. The preliminary numerical results are reported.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

In many optimization problems, the variables are interrelated by physical laws like the conservation of mass or energy, Kir-
chhoffs voltage and current laws, and other system equalities or inequalities that must be satisfied, see [1,2,11–13,17,22,25,29].
In this paper, we consider the following nonlinear programming problem with general nonlinear equality constraints

min f ðxÞ;
s:t: cðxÞ ¼ 0;

ð1:1Þ

where x 2 Rn; f : Rn ! R; c : Rn ! Rm are twice continuously differentiable.
Many efficient penalty function methods exist for solving problem (1.1). For example, sequential unconstrained optimi-

zation methods based on various penalty functions, and sequential quadratic programming (SQP) methods that use either
line search or trust-region strategies [24]. The effectiveness of these so-called penalty-type methods hinges on how well
the initial penalty parameter is chosen and how ‘‘intelligently’’ it is updated during the course of minimization. To avoid
the selection of the penalty parameter, some authors research the technique without the penalty function, for example,
see [4,7,8,14–16,20,26–28,30,31]. The methods which do not use any penalty function are called the penalty-free-type ones.
Filter methods are important category of the penalty-free-type methods, for example, see [4,7,14–16,21,28,30,31].

Filter methods, which were introduced by Fletcher and Leyffer [15] in 1997, have been well studied and proven to be suc-
cessful for solving constrained optimization problems. For example, Gould et al. [18] used filter methods to solve nonlinear
equations and nonlinear least squares problems. Filter techniques have also been used to solve unconstrained problems [19],
which in contrast to trust-region methods generates nonmonotone iterates with respect to the value of the objective func-
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tion, and have produced good numerical results. Chen [4,5], Gould [20], Ulbrich [27] etc., presented some other penalty-free-
type methods without a filter and proved the global convergence.

Penalty-free-type methods, which do not need any penalty function, have become one of hot spots in the nonlinear opti-
mizations. The underlying idea of this class methods is that there are two goals to determine whether a trial point is accepted
or not. One is improving the feasibility and the other is reducing the value of objective function. In order to improve these two
goals proportionally, we must build a relation between reducing the value of objective function and improving the feasibility.

The paper presented here gives a new method without a penalty function or a filter for the solution of (1.1), which be-
longs to the class of line search Newton–Lagrange method for constrained optimization. The algorithm generates new iterate
points by solving linear equations and line search procedures. The new method is motivated by Wächter et al. [30,31]. Wäch-
ter et al. presented line search filter methods for nonlinear programming and analyzed the global and local convergence of
their method. The main contribution of this paper is that the new method presented uses also line search but does not use
any penalty function or a filter. Thus the new method does not need to reserve the filter set at every iteration. The trust-re-
gion frame is adopted in Ref. [5] and the acceptable criteria of the two algorithms are different. Under mild conditions, we
analyze the global and local convergence of the algorithm presented.

Chin [8], Fletcher [15], Wächter [31] etc., have discussed that the filter technique like l1 penalty function methods could
suffer from Maratos effect when iterates are near to local solutions. As a remedy, Fletcher and Leyffer propose to improve the
search direction, if the full step is rejected, by means of a second order correction which aims to further reduce infeasibility.
In order to prevent the Maratos effect, we also employ second order correction steps but do not use a penalty function or a
filter in this article. Under mild conditions, we analyze the local convergence of the algorithm with second order correction.
The preliminary numerical results shows that the algorithm is robust and efficient.

This paper is organized as follows. In Section 2, the formal algorithm is described. In Section 3, we prove that, under mild
conditions, every limit point of the sequence of iterates generated by the algorithm is feasible, and there exists at least one
limit point which is a stationary point for the problem. In Section 4, we study the local superlinear convergence of the algo-
rithm with second order correction. Some numerical results for problems from [6] are reported in Section 5.

Throughout the paper, k:k denotes the Euclidean norm k:k2. For simplicity, we also use subscripts to denote functions
evaluated at iterates, for example, fk ¼ f ðxkÞ; ck ¼ cðxkÞ. Moreover, we denote

gðxÞ ¼ rf ðxÞ 2 Rn; AðxÞ ¼ ðrc1ðxÞ;rc2ðxÞ; . . . ;rcmðxÞÞ 2 Rn�m:

2. The algorithm

The Karush–Kuhn–Tucker (KKT) conditions for the problem (1.1) are given by

gðxÞ þ AðxÞk ¼ 0;
cðxÞ ¼ 0;

ð2:1Þ

with the Lagrangian multipliers k. Under linear independence of the constraint gradientrcðxÞ, these are the first order opti-
mality conditions for (1.1).

Given a starting point x0, the proposed line search algorithm generates a sequence of improved estimates xk of the solu-
tion for the problem (1.1). Therefore, at the current iterate point xk, a search direction dk is computed from the linearization
of the KKT conditions (2.1),

Hk Ak

AT
k 0

� �
dk

kþk

� �
¼ �

gk

ck

� �
: ð2:2Þ

Here, the symmetric matrix Hk denotes the Hessian matrix rxxLðxk; kkÞ of the Lagrangian function

Lðx; kÞ ¼ f ðxÞ þ kT cðxÞ

of the problem (1.1), or an approximation to this Hessian. After a search direction dk has been computed, a step size
ak 2 ð0;1� is determined by line search method, and then we can obtain the next iterate xkþ1 ¼ xk þ akdk.

Now we decompose the step dk into orthogonal components

dk ¼ pk þ qk;

where,

qk ¼ Yk�qk; pk ¼ Zk�pk; ð2:3Þ

Yk; Zk are obtained from a QR-factorization of the matrix Ak, i.e.,

Ak ¼ ½Yk Zk�
Rk

0

� �
;

here, ½Yk Zk� 2 Rn�n is an orthogonal matrix, Rk 2 Rm�m is an upper triangular matrix. If the matrix Ak has full rank, then we
follows from (2.2) that
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