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a b s t r a c t

The inverse problem of determining the temperature of a heat conductor together with an
unknown spacewise dependent heat source from measured final data or time-average tem-
perature observation is studied. The weak solution theory is applied for calculating the gra-
dient of the least-squares functional that is minimized. For the general case when the heat
source is the product between a known function hðx; tÞ and the unknown source function
f ðxÞ new explicit formulae, derived via the solution of the corresponding adjoint problem,
are obtained. Numerical results obtained using the conjugate gradient method are pre-
sented and discussed.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

This paper is concerned with the mathematical analysis of the inverse spacewise dependent source problem with final
‘‘upper-base’’ or time-average temperature data. Mathematical models related to inverse problems of this type arise in var-
ious physical and engineering settings, e.g., the identification of sources of water and air pollution in the environment, or the
determination of heat sources in heat conduction.

Although much of the analysis presented herein is applicable to general second-order linear PDEs with time-independent
coefficients using the semigroup theory, see [1], for simplicity, we present the development of the theory for the classical
one-dimensional heat equation.

We study the inverse problem of determining the temperature uðx; tÞ and the heat source f ðxÞ in the parabolic heat
equation

utðx; tÞ � uxxðx; tÞ ¼ f ðxÞhðx; tÞ þ gðx; tÞ; ðx; tÞ 2 XT :¼ ð0; lÞ � ð0; T�; ð1Þ

where h and g are given functions, and l and T are given positive constants. Here l represents the length of the finite heat
conductor and the subscripts t and x in Eq. (1) denote the partial derivatives with respect to t and x, respectively. Eq. (1)
has to be solved subject to the initial temperature condition

uðx;0Þ ¼ u0ðxÞ; x 2 ½0; l�; ð2Þ

the Dirichlet boundary conditions

uð0; tÞ ¼ l0ðtÞ; uðl; tÞ ¼ llðtÞ; t 2 ½0; T�; ð3Þ

and the additional ‘‘upper-base’’ final temperature condition

uðx; TÞ ¼ uTðxÞ; x 2 ½0; l�: ð4Þ
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One can also consider Neumann or mixed boundary conditions instead of the Dirichlet boundary conditions (3).
Existence, uniqueness and stability results for the inverse source problem (1)–(4) are provided in [2–6], with numerical

results presented in the case h ¼ 1 in [7–9] and, more recently, in the case h ¼ hðtÞ in [10]. We note that by letting hðx; tÞ
multiply f ðxÞ it means that the direct method of [11], based on differentiating Eq. (1) with respect to t in order to eliminate
the heat source f ðxÞ, is not applicable. We finally mention that the existence of a solution of a related nonlinear inverse
source problem in the case h ¼ hðuÞ, instead of h ¼ hðx; tÞ in Eq. (1), has been investigated elsewhere, [12].

In comparison with previous works on the subject of spacewise heat source identification, we consider the case when
h ¼ hðx; tÞ which is more general than [10] who considered only the case h ¼ hðtÞ. Much of the detail of the proof of Theo-
rem 2 is also different. Moreover, we shall also consider in Section 4, instead of (4) the following time-average temperature
conditionZ T

0
uðx; tÞdt ¼ UTðxÞ; x 2 ½0; l�; ð5Þ

which has never been investigated numerically before and it represents one of the main contributions of the present study.
Finally, we mention that we do not consider the general inverse problem investigated in [13,14] concerning the retrieval of
the general source f ðx; tÞ from limited measurement data which do not ensure a unique solution.

The plan of the paper is as follows. In Section 2 we give the mathematical analysis of the inverse problem and recall pre-
vious existence and uniqueness results for solutions in Hölder and Hilbert spaces. In Sections 3 and 4 we introduce a quasi-
solution of the inverse source problems (1)–(4) and (1)–(3), (5), based on the weak solution of the corresponding direct prob-
lem. Further, we introduce an adjoint parabolic problem and prove explicit relationships between the weak solution of this
problem and the gradient of a cost objective functional which minimizes the L2-gap norm between the computed and the
given overspecified data. Based on these expressions, the conjugate gradient method is described in Section 5 for solving iter-
atively the inverse source problem with final or time-average temperature data observation. Section 6 presents and dis-
cusses the numerical results, whilst Section 7 gives the conclusions of the paper and possible future work.

2. Mathematical analysis

2.1. Strong solution in Hölder spaces

Let � 2 ð0;1Þ be fixed and assume that:

(A) the functions h; g 2 H�;�=2ðXTÞ, l0;ll 2 H1þ�=2ð½0; T�Þ;u0 2 H2þ�ð½0; l�Þ and the consistency conditions of order 0, namely,
l0ð0Þ ¼ u0ð0Þ;llð0Þ ¼ u0ðlÞ are satisfied.

For the definition of the above Hölder spaces and norms, see [15]. Then, under assumption (A), there exists a unique solu-
tion u 2 H2þ�;1þ�=2ðXTÞ of the direct problem (1)–(3) for any given source function f 2 H�ð½0; l�Þ such that the consistency con-
ditions of order 1, namely,

l00ð0Þ � u000ð0Þ ¼ f ð0Þhð0; 0Þ þ gð0;0Þ;
l0lð0Þ � u000ðlÞ ¼ f ðlÞhðl; 0Þ þ gðl;0Þ

�
ð6Þ

are satisfied, [15]. It is then natural to consider the Hölder space ðu; f Þ 2 H2þ�;1þ�=2ðXTÞ � H�ð½0; l�Þ for the pair classical strong
solution ðuðx; tÞ; f ðxÞÞ of the inverse source problem (1)–(4). However, if the source is sought in the general form f ðx; tÞ in-
stead of f ðxÞ, [13,14], then the solution of the inverse problem is not unique in general, [2], as one could easily add terms
of the form tðt � TÞxðx� lÞvðx; tÞ, with arbitrary twice differentiable function v, which satisfy the homogeneous form of con-
ditions (2)–(4), to uðx; tÞ and obtain a very different source function dependent on both space and time variables. Uniqueness
of f ðx; tÞ can however be restored if one restricts the space of functions in which the source f ðx; tÞ is to lie, [16,14,17].

Let us assume now that the additional final observation (4) satisfies:

(B) uT 2 H2þ�ð½0; l�Þ and the following compatibility conditions:

l00ðTÞ � u00Tð0Þ ¼ f ð0Þhð0; TÞ þ gð0; TÞ;
l0lðTÞ � u00TðlÞ ¼ f ðlÞhðl; TÞ þ gðl; TÞ:

�
ð7Þ

The assumption (B) is a consequence of (6) and the compatibility condition for the input data at t ¼ T . Then, if the
assumptions (A) and (B) are satisfied and if jhðx; tÞjP h0 > 0 for all ðx; tÞ 2 XT , the inverse source problem (1)–(4) has at most
one solution ðu; f Þ 2 H2þ�;1þ�=2ðXTÞ � H�ð½0; l�Þ, [3]. We also have the following stronger solvability result of [4].

Theorem 1. Suppose that h;ht ; g 2 H�;�=2ðXTÞ;u0, uT 2 H2þ�ð½0; l�Þ;l0;ll 2 H1þ�=2ð½0; T�Þ,

hðx; tÞP 0; htðx; tÞP 0; jhðx; TÞjP hT > 0 8ðx; tÞ 2 XT ;
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