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a b s t r a c t

In this paper, Bernstein operational matrix of fractional derivative of order a in the Caputo
sense is derived. We also apply this matrix to the collocation method for solving multi-
order fractional differential equations. The numerical results obtained by the present
method compares favorably with those obtained by various collocation methods earlier
in the literature.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, there has been a great deal of interest in fractional calculus since there have been a wide variety of appli-
cations in physics and engineering (see for example [1] and the references therein). A number of definitions for the fractional
derivative have emerged over the years while the Riemann–Liouville and Caputo definitions are the most commonly used
ones. The Caputo definition of order a > 0 is defined as

Daf ðxÞ ¼
1

Cðn�aÞ
R x

0
f ðnÞðtÞ

ðx�tÞaþ1�n dt; n� 1 < a < n; n 2 N;

dn

dxn f ðxÞ; a ¼ n 2 N:

8<
: ð1Þ

For the Caputo’s derivative we have [2]

DaC ¼ 0 ðC is a constantÞ; ð2Þ

Daxj ¼
0; for j 2 N [ f0g and j < dae;
Cðjþ1Þ

Cðjþ1�aÞ x
j�a; for j 2 N [ f0g and j P dae or j R N and j > bac:

(
ð3Þ

We use the ceiling function dae to denote the smallest integer greater than or equal to a, and the floor function bac to denote
the largest integer less than or equal to a. Caputo’s fractional differentiation is a linear operation:

Daðc1f1ðxÞ þ c2f2ðxÞÞ ¼ c1Daf1ðxÞ þ c2Daf2ðxÞ; ð4Þ
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where c1 and c2 are constants. There are different techniques for solving fractional differential equations, fractional integro-
differential equations and fractional optimal control problems, like fractional characteristic method [3], variational iteration
method [4,5], Adomian decomposition method [6], operational matrix of B-spline functions [7], operational matrix of Legen-
dre polynomials [8,9], operational matrix of Chebyshev polynomials [10], Legendre collocation method [11], pseudo-spectral
method [12], Legendre multiwavelet collocation method [13] and other methods [14–16].

In the present paper we intend to extend the application of the Bernstein polynomials to solve the fractional order dif-
ferential equations. Our main aim is to generalize the Bernstein polynomials operational matrix to fractional calculus. It
is worthy to mention here that, the method based on using the operational matrix for solving differential equations is com-
puter oriented. The main characteristic behind the approach using this technique is that it reduces these problems to those of
solving a system of algebraic equations thus greatly simplifying the problem. The paper is organized as follows. We begin by
introducing some properties of Bernstein polynomials which are required for establishing our results. In Section 3 the Bern-
stein operational matrix of fractional derivative is obtained. Section 4 is devoted to applying the Bernstein operational matrix
of fractional derivative for solving multi-order fractional differential equations. Numerical simulations are reported in Sec-
tion 5. In Section 6, we give a brief conclusion.

2. Properties of Bernstein polynomials

The well known Bernstein polynomials of the nth degree are defined on the interval ½0;1� as [17,18]

bn
i ðxÞ ¼

n

i

� �
xið1� xÞn�i

; i ¼ 0; . . . ;n: ð5Þ

These Bernstein polynomials form a complete basis on over the interval ½0;1�. A recursive definition also can be used to gen-
erate these polynomials

bn
i ðxÞ ¼ ð1� xÞbn�1

i ðxÞ þ xbn�1
i�1 ðxÞ; i ¼ 0; . . . ; n;

where bn�1
�1 ðxÞ ¼ 0 and bn�1

n ðxÞ ¼ 0. Since the power basis f1; x; x2; . . . ; xng forms a basis for the space of polynomials of degree
less than or equal to n, any Bernstein polynomial of degree n can be written in terms of the power basis. This can be directly
calculated using the binomial expansion of ð1� xÞn�i, one can show that

bn
i ðxÞ ¼

Xn

j¼i

ð�1Þj�i n
i

� �
n� i

j� i

� �
xj; i ¼ 0; . . . ; n: ð6Þ

On the other hand, the fact that they are not orthogonal turns out to be their disadvantage when used in the least-squares
approximation. As said in [19] one approach to direct least-squares approximation by polynomials in Bernstein form relies
on construction of the basis fdn

0ðxÞ; d
n
1ðxÞ; . . . ; dn

nðxÞg that is ‘‘dual’’ to the Bernstein basis of degree n on x 2 ½0;1�. This dual
basis is characterized by the propertyZ 1

0
bn

i ðxÞd
n
j ðxÞdx ¼

1 for i ¼ j;

0 for i – j;

�

for i; j ¼ 0;1; . . . ;n. A function f ðxÞ, square integrable in ½0;1�, may be expressed in terms of the Bernstein basis [17,18]. In
practice, only the firstðnþ 1Þ term Bernstein polynomials are considered. Hence if we write

f ðxÞ ’
Xn

i¼0

cib
n
i ðxÞ ¼ CT BðxÞ; ð7Þ

where the Bernstein coefficient vector C and the Bernstein vector BðxÞ are given by

CT ¼ ½c0; . . . ; cn�;

BðxÞ ¼ ½bn
0ðxÞ; b

n
1ðxÞ; . . . ; bn

nðxÞ�
T
; ð8Þ

then

ci ¼
Z 1

0
f ðxÞdn

i ðxÞdx; i ¼ 0;1; . . . ; n:

Author of [20] has derived explicit representations

dn
j ðxÞ ¼

Xn

k¼0

kjkbn
kðxÞ; j ¼ 0;1; . . . ;n;

for the dual basis functions, defined by the coefficients
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