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a b s t r a c t

We investigate the existence of ‘‘front’’ solutions of the saturation equation of two-phase
flow in porous media. By front solution we mean a monotonic solution connecting two dif-
ferent saturations. The Brooks–Corey and the van Genuchten models are used to describe
the relative-permeability – and capillary pressure–saturation relationships. We show that
two classes of front solutions exist: self-similar front solutions and travelling-wave front
solutions. Self-similar front solutions exist only for horizontal displacements of fluids
(without gravity). However, travelling-wave front solutions exist for both horizontal and
vertical (including gravity) displacements. The stability of front solutions is confirmed
numerically.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The two-phase flow process in porous media occurs in many environments. Typical examples of such process in porous
media include water–oil and oil–gas displacements in natural petroleum reservoirs [1, 2], brine and CO2 movement in geo-
logic formations such as petroleum reservoirs and deep saline aquifers [3], water and air flow in natural surface/subsurface
unsaturated soils [4, 5], and water and air or oxygen displacement in the underground during aerated subsurface drip irri-
gation or oxidation [6, 7]. In the theory of two-phase flow in porous media the system of equations which describes the dis-
placement of a fluid by another fluid can be reduced to a nonlinear advection–diffusion equation which can be written as a
conservation law of the quantity of one fluid contained in a given soil volume. The resulting equation is called the saturation
equation. The advective term is due to injection and/or gravitation while the diffusive term is due to capillarity (the force due
to the difference on pressures of the two fluids). Note that the ‘‘diffusion-like’’ behaviour due to capillarity is different from
the standard molecular diffusion in multicomponent miscible flow.

One of the characteristics of the saturation equation is the existence of semi-analytical solutions. These semi-analytical
solutions are presented as self-similar solutions and travelling-wave solutions. Since it seems impossible to list here all of the
publications on this subject, we will refer the reader to the fundamental book of [8] for further details.

In this paper, we are interested in self-similar and travelling-wave solutions of the saturation equation which are front
solutions. By front solution we mean a wave connecting two regions where the saturations (fluid contents) are different.
From mathematical point of view, a front solution is a monotonic function WðnÞ in the n�W plane (where n and W represent
distance and saturation, respectively) that is defined for all n, and such that W connects two saturations Wl at �1
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(i.e. limn!�1WðnÞ ¼ Wl) and Wr at1 (i.e. limn!1WðnÞ ¼ Wr) and stabilizes at �1 (i.e. limn!�1W0ðnÞ ¼ 0). Such solutions rep-
resent the asymptotic of a wide class of other more general solutions that correspond to various initial conditions.

The well-known Brooks–Corey and van Genuchten models which describe relative-permeability and capillary pressure
curves are used in this paper. We found that when self-similar solutions exist (i.e. the case of horizontal displacements:
advection and diffusion without gravitation), front solutions exist for any couple of boundary saturation values indepen-
dently from the model. When travelling-wave solutions of the first type exist (i.e. the case of vertical displacements: advec-
tion and diffusion with gravitation), front solutions exist for both Brooks–Corey and van Genuchten models. However, such
front solutions does not exist for any couple of boundary saturation values. The shape of the advective flux function plays an
essential role on the determination of the admissible boundary saturations. When capillarity is the sole mechanism of trans-
port (i.e. diffusion only without advection), travelling-wave front solutions of the second type exist for some alternative
models (i.e. a combination of both Brooks–Corey and van Genuchten models). A numerical study shows that travelling-wave
front solutions are stable for the case of vertical displacements whereas self-similar fronts are stable for the case of horizon-
tal displacements.

2. Mathematical model

The partial differential equations which describe the flow of the two incompressible and immiscible fluids in the porous
medium are based on the conservation of mass of the two phases
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and the modified Darcy’s laws
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; ð2Þ

where a ¼ n for the non-wetting phase and a ¼ w for the wetting phase. In these equations x is distance and t is time, Sa is
the saturation of phase a (the fractional volume of the pore space filled with phase a), qa; pa; kra; qa and la are the flow
rate, the pressure, the relative-permeability, the density and the viscosity of phase a, respectively. The parameters / and
k represent the porosity and permeability of the porous medium and g is the acceleration due to gravity.

The two-phase saturations are constrained by

Sn þ Sw ¼ 1: ð3Þ

Combining the two-mass conservation Eq. (1) and using Eq. (3) yields the expression of the total flux

qn þ qw ¼ qðtÞ: ð4Þ

The difference between the non-wetting and wetting phase pressures defines the capillary pressure

pc ¼ pn � pw: ð5Þ

Capillary pressure function in porous media is a function of saturation [9]. Eq. (3) allows to write the relative-permeability
and the capillary pressure functions as functions of one of the two saturations. In this paper we shall write these relations as
functions of the non-wetting phase saturation, kra ¼ kraðSnÞ and pc ¼ pcðSnÞ.

Using Eqs. (2), (4) and (1) for a ¼ n we obtain after some mathematical manipulations the saturation equation (see for
instance [10])

/
@S
@t
þ @

@x
FðSÞ lwq

kkrwðSÞ
þ ðqw � qnÞg�

@pcðSÞ
@x

� �� �
¼ 0; ð6Þ

where FðSÞ ¼ k
lw

krnðSÞkrwðSÞ
krnðSÞþMkrwðSÞ and M ¼ ln

lw
is the viscosity ratio. In Eq. (6) we omitted index ‘‘n’’ and now S � Sn is the non-wet-

ting phase saturation. The saturation Eq. (6) is a nonlinear advection–diffusion transport equation. The advective flux of the
non-wetting phase which is due to injection and gravity effects is defined by

AðSÞ ¼ FðSÞ lwq
kkrwðSÞ

þ ðqw � qnÞg
� �

: ð7Þ

The diffusive flux is due to capillarity effects which generate the following diffusivity of the non-wetting phase

DðSÞ ¼ FðSÞdpcðSÞ
dS

: ð8Þ

Substituting (7) and (8) into (6) we obtain the saturation equation of the non-wetting phase written in a simple form as
follows
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