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a b s t r a c t

This paper develops an analytical dynamic model for cracked beams including bending,
axial stiffness, rotational inertia, shear deformation and the coupling of the last two effects.
The damage is modelled using a rotational spring that simulates the crack based on frac-
ture mechanics theory. The developed model is used to predict variations on natural fre-
quencies for several crack sites and damage magnitude along the beam. The importance
of this work lies in the development of an analytical model that has no approximation
due to discretization of the displacement field. This initial theoretical approach describes
the expected behaviour for changes in the natural frequencies for simply-supported and
clamped-free beams with the precision that only analytical methods allow. The results pro-
vide a useful benchmark to compare with approximate numerical methods that can be
used to model and analyse the problem. The model showed similar results for long span
beams, but the inclusion of rotational inertia and shear deformation effects rendered
improvements in the dynamic behaviour mainly in the case of slender and short span
beams when compared with the simplified Euler–Bernoulli model.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Experimental research on the effects of crack and damage on the integrity of structures has been performed by several
authors in the last decades. Liebowitz and Claus [1], one of the pioneers in the area, have studied the load capacity of col-
umns with notches and suggested a failure criterion based on stress concentration factor to explain differences in load capac-
ity from non-notched columns. Chondros [2,3] and Christides and Barr [4] should be mentioned as authors that extended the
views of the previous work from the load capacity behaviour to a dynamic point of view, including in their work comparisons
with experimental data. This was perceived later as a way to detect damage using inverse analysis. Shen and Pierre [5] devel-
oped a bi-dimensional finite element approach using a Galerkin approach and very good agreement with experimental data
up to the third natural frequency and mode shape was obtained. Narkis [6] presented a framework to the crack identification
based on the frequency response function of cracked beams. The developed equations to predict the natural frequencies
changes due to crack were based on bending effects in a simply supported linear beam, and they were used to solve the in-
verse problem in order to find the crack position. A state of the art review presented by Dimaragonas [7] gathered hundreds
of works that address the problem of vibration on cracked structures. The reviewed papers were then classified according to
the way the problem is addressed. Since then, another vast quantity of papers has been published in the referred subject.
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The development of an analytical model for dynamic modelling of beams has a great importance since no approximation
due to discretization is included in the formulation. This leads to unbiased values that can be used as benchmark to compare
new numerical models.

Chondros et al. [8,9] presented a continuous cracked bar vibration theory for rods with cracks and compared the obtained
first natural frequency with experimentally measured ones in cracked rods. A good correlation with the experimental results
was obtained. Problems related to the extent of the crack undermined some of the experimental results for crack depth to
height ratios greater than 0.5. Fernandez-Saez and Rubio [10] suggested a closed form solution for the problem of obtaining
the first natural frequency of a cracked simply supported beam using the Rayleigh method. It was compared the analytical
results with those obtained with a finite element model, resulting in excellent correlation. Unfortunately, no experimental
data was used to validate and the proposed formulation is only useful for the first natural frequency.

Narkis [6] works, Owolabi and Swamidas [11] proposed the detection of cracks in beams using FRF in order to determine
their extents and locations. The damage detection schemes used in their study depends on the measured changes in the first
three natural frequencies and the corresponding amplitudes of the measured acceleration FRF. Chondros [12], using the frac-
ture mechanics theory, developed a model based on the local flexibility at the cracked section. They developed a continuous
flexibility function to represent the crack based on the displacement fields in the vicinity of the crack and then fitted the
obtained results (just for the first natural frequency) with numerical and experimental ones.

General methods were proposed by [13–15] to obtain the eigenfrequencies and mode shapes of beams containing multi-
ple cracks and subjected to axial forces. Cracks were assumed to introduce changes in the local flexibility and they were
modelled as rotational springs. The method used a set of end conditions as initial parameters to determine the mode shape
functions. The proposed method could efficiently be used to detect crack locations and extent in numerically generated
beam-columns examples based just on frequency changes. It is stated by [14] that the method could be used to predict
the critical load of damaged structures based on eigenfrequency measurements.

Naniwadekar et al. [16] suggested a technique that uses experimentally measured natural frequency changes of horizon-
tal steel hollow pipes to predict crack location, depth and orientation. They modelled the crack by a rotational spring with a
straight front in different orientations in a section of rod specimen. In their paper the rotational spring stiffness for a crack
size and orientation was obtained experimentally by the deflection and the vibration methods. They report that the proposed
method is very robust, since the obtained maximum variation in damage location was 2.68%, which was much less than the
induced change in stiffness.

Most of the papers that are found in the literature deals with the crack detection problem and frequency estimation
assuming just the bending behaviour of the cracked beams [4,8–10,13,11], Aydin [15], and Naniwadekar et al. [16] and some
few include important effects like axial force effects [14]. The presented paper extends these analyses considering some
other important effects in the beam dynamic behaviour. For those interested in experimental data related to this theme,
it is suggested the following papers: Christides and Barr [4], Shen and Pierre [5,17,18], Rizos and Aspragathos [19], Ruotolo
and Surace [20], Chondros et al. [8,9,12], Chondros [12], Saavedra and Cuitiño [21], Owolabi and Swamidas [11], Nahvi and
Jabbari [22], Chen et al. [23], Naniwadekar et al. [16].

This paper presents a general framework to analyse the changes in natural frequencies in simply supported and clamped-
free beams including some important behaviours that should be considered when dealing of beams of diverse dimensions. It
is proposed to compare two models for the dynamic vibration equation: (a) one model including bending and axial stiffness
effects (Simplified Model) similar to that presented by [14] and (b) a model including bending, buckling, rotational inertia,
shear deformation and couplings effects (Complete Model). These models are compared using simple beam examples for
long and short spans including one cracked site in order to verify the importance of such terms in the governing equations.
The idea is to analyse the models regarding their accuracy in evaluating frequency changes in these situations.

2. Equations for cracked beams including bending, buckling, shear deformation, rotational inertia and coupling effects

The general equation for beams including bending, shear deformation and rotational inertia can be improved, based on
the equation proposed by [24] including the axial stiffness effect and coupling of rotational inertia and shear deformation.
This formulation is written as indicated by Eq. (1).
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where E is the Young modulus, G is the Shear modulus, I is the moment of inertia, A is the sectional area, N is the axial force
acting in the beam axis, �m is the mass per unit length, r is the radius of gyration, k0A is the effective shear area of the cross
section (k0 = 5/6 for rectangular sections), x is the coordinate space along beam axis v is the displacement in y direction and t
is the time variable.

In order to solve Eq. (1), assuming that time and position variables can be separated, one can write the following general
solution in the time and space domain:

vðx; tÞ ¼ YðxÞeixt : ð2Þ
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