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a b s t r a c t

The paper presents a bi-objective robust program to design a cost-responsiveness efficient
emergency medical services (EMS) system under uncertainty. The proposed model simul-
taneously determines the location of EMS stations, the assignment of demand areas to EMS
stations, and the number of EMS vehicles at each station to balance cost and responsive-
ness. We develop a robust counterpart approach to cope with the uncertain parameters
in the EMS system. Extensive numerical studies are performed to demonstrate the benefits
of our robust optimization approach.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Emergency Medical Services (EMS) are designed to provide people with sudden life-threatening emergencies with quick,
effective medical care. Extensive research has been conducted to study the location and sizing of emergency medical services.
The objectives considered include costs minimization, coverage equity maximization, area coverage maximization, call cov-
erage maximization, and so on [1]. In recent years, the multi-objective EMS design problem has attracted a lot of attention.
Literature on the deterministic multi-objective design problem is abundant. A sampling of these research includes [2–6].

To capture the uncertainties in the system, Harewood [7] embeds a queuing model into a bi-objective Maximum Availability
Location Problem for an EMS system. The two objectives considered are the maximization of the serviced population and the
minimization of the cost of covering the population. Later, Araz et al. [8] propose a fuzzy multi-objective maximal covering loca-
tion model to determine the best base locations for a limited number of vehicles so that service level objectives are optimized.
Three objectives are considered: maximization of the population covered by one vehicle, maximization of the population with
backup coverage, and minimization of the total travel distance. More recently, Bozorgi-Amiri et al. [9] present a multi-objective
robust stochastic programming approach for disaster relief logistics under uncertainty by using scenarios approach. The model
attempts to minimize the sum of the mean and the variance of the total cost of the relief chain; meanwhile, it maximizes the
affected areas’ satisfaction levels through minimizing the sum of the maximum shortage in the affected areas. Chanta et al. [10]
study an emergency vehicle location problem with the objectives of maximization of the number of requested calls within a
required response time limit, and the reduction of disparity in service between rural and urban citizens. A well-known hyper-
cube model is embedded into the model to calculate the expected number of emergency calls.

The above research on the stochastic multi-objective EMS design problem is limited in that: (a) The queuing models [10]
are often too complex to tackle large-scale design problems; (b) The linearization of the chance constraints is not an easy

0307-904X/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.apm.2013.07.028

⇑ Corresponding author. Tel.: +86 010 62772874; fax: +86 010 62794399.
E-mail addresses: zhzhang@tsinghua.edu.cn (Z.-H. Zhang), haijiang@tsinghua.edu.cn (H. Jiang).

Applied Mathematical Modelling 38 (2014) 1033–1040

Contents lists available at ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier .com/locate /apm

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apm.2013.07.028&domain=pdf
http://dx.doi.org/10.1016/j.apm.2013.07.028
mailto:zhzhang@tsinghua.edu.cn
mailto:haijiang@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.apm.2013.07.028
http://www.sciencedirect.com/science/journal/0307904X
http://www.elsevier.com/locate/apm


task [11]; and (c) The associated uncertainties in the EMS system is difficult, if not impossible, to quantify through proba-
bility distribution functions due to the scarcity of data. To address these challenges, we develop a robust counterpart (RC)
approach [12] to the bi-objective emergency medical service design problem under uncertainty. In the RC approach, the
uncertainty is not described by a probability density function or scenarios. Rather, it is ‘‘deterministic’’ and known to belong
to an uncertainty set [12,13]. This set defines the limits on uncertainty that a solution will be immunized against. Hence,
instead of immunizing the solution in a probabilistic sense, the decision-maker searches for a solution that is optimal for
all possible realizations of the uncertainty set.

The main contributions of this paper are summarized as follows:

� To the best of our knowledge, we are the first to develop a robust counterpart approach to solve the bi-objective EMS
design problem, in which the associated uncertainties are hard to quantify through probability distribution functions
due to the scarcity of data; and
� Our model is capable of finding Pareto-optimal solutions for costs and response times by optimizing the location of the

EMS stations and the number of emergency vehicles at each station.

The remainder of this paper is organized as follows. A short introduction of the RC approach is presented in Section 2. Section
3 provides a deterministic bi-objective program, while Section 4 presents its robust counterpart. Extensive numerical studies
are carried out in Section 5. Finally, Section 6 concludes this paper and outlines possible future research directions.

2. A brief introduction on the RC approach

Robustness analysis takes into account uncertainty or imprecision in model parameters so as to produce decisions that
are more robust, that is, behave reasonably well under uncertainty. The robust counterpart approach [12] is a popular means
to increase the robustness of a model. We present a brief introduction on this approach in this section.

Consider the following problem subject to uncertain coefficients:

ðLPDÞmin CT X;

s:t: aT
i X 6 bi; 8i; ð1Þ

X 2 Rn:

where ai ¼ ½ai1; ai2; . . . ; ain�T , bi 2 R. In a typical deterministic model, we assume the exact values of C, ai and bi are known. The
RC approach considers uncertain parameters in the model. Without loss of generality, we assume the uncertainty affect vec-
tor ai. According to [12], the RC of constraint (1) is derived by addressing the following mathematical programs:

max
ai2U

aT
i X 6 bi; 8i:

where U represents an uncertainty set for ai. In this way, the solution is robust under uncertainty if the maximum value of
the left-hand side of constraint (1) is still less than the right-hand side of the constraint.

To formulate the uncertainty of ai, two types of uncertainty sets are common in literature: box and ellipsoidal uncertainty
sets. Let aij denote an uncertain entry in the vector. The box uncertainty set is defined as a box of form
UB ¼ faij 2 R : jaij � �aijj 6 �Hijg, where �aij is the nominal value of aij, Hij represents the uncertainty scale for this given entry,
and � is the uncertainty level common across all the entries [12]. The RC with box uncertainty set often leads to over-con-
servative solutions because the worst cases of every uncertain parameter are satisfied simultaneously. To overcome this
drawback, the ellipsoidal uncertainty set is introduced to reflect the fact that the coefficients of the constraints are not ex-
pected to be simultaneously at their worst values. The ellipsoidal uncertainty set is defined as:

UE ¼ ai 2 Rn : ðai � �aiÞTR�1ðai � �aiÞ 6 X2
n o

:

where �ai is the vector of ai’s nominal values, R is a positive definite matrix, and X is a safety parameter indicating the amount
of uncertainty. By using an affine transformation, it can also be expressed as a ball of radius X:

UE ¼ fai 2 Rn : ai ¼ �ai þ Dn; knk 6 Xg;

where D ¼ R
1
2.

Under ellipsoidal uncertainty, the RC of Constraint (1) can be derived as follows:

max
ai2UE

aT
i X 6 bi;

() max
knk6X
ð�ai þ DnÞT X 6 bi;

() �aT
i X þXkDXk 6 bi:

The resulting RC is a conic quadratic constraint [14] which can be solved efficiently by interior-point methods. The major
advantages of the RC approach are: (1) We are not required to have the probability information about the uncertain param-
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