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a b s t r a c t

The spread of tuberculosis is studied through a two-patch epidemiological system SE1 � � � EnI
which incorporates migrations from one patch to another just by susceptible individuals.
Our model is consider with bilinear incidence and migration between two patches, where
infected and infectious individuals cannot migrate from one patch to another, due to med-
ical reasons. The existence and uniqueness of the associated endemic equilibria are dis-
cussed. Quadratic forms and Lyapunov functions are used to show that when the basic
reproduction ratio is less than one, the disease-free equilibrium (DFE) is globally asymptot-
ically stable, and when it is greater than one there exists in each case a unique endemic
equilibrium (boundary equilibria and endemic equilibrium) which is globally asymptoti-
cally stable. Numerical simulation results are provided to illustrate the theoretical results.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

For a given system, the focus in qualitative mathematical epidemiology is the long term dynamics. The simplest possible
attractor is a globally asymptotically stable equilibrium. An equilibrium can be shown to be globally asymptotically stable,
using Poincar–Bendixson theory [1], Bendixson’s Negative Criterion [2,3], or the generalized version of Dulac [4]. Another
method of Li and Muldowney [5–7] for demonstrating global stability global stability in n dimensions have been developed
more recently, with applications in three [8–10] and four dimensions [11,12]. For higher-dimensional systems, the theory of
quadratic forms [13] or Lyapunov’s method can be used [14,15]. Lyapunov’s method requires to find a function V such that
the flow always crosses the level sets from higher values of V to lower values. When such a function can be found, then any
isolated minimum of the function is a stable equilibrium of the flow.

In this paper, the stability of a 2n + 4-dimensions system will be investigated using Lyapunov–LaSalle functions and qua-
dratic forms. The function V ¼

Pn
i¼1aiðxi � x�i ln xiÞ has a long story in epidemiology [16–21] and in ecology [22,23]. This

function was originally discovered by Volterra himself, although he did not use the vocabulary and the theory of Lyapunov
functions. Since epidemic models are Lotka–Volterra like models, the pertinence of this function is not surprising.

The model studied in this paper is motivated by the issue of modeling tuberculosis. Several models of one population in
the literature [24–28] have a common structure in that there is a single compartment of susceptible individuals, a single
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compartment of infectious, constant recruitment of new individuals into the susceptible individuals compartment, and mass
action incidence. By allowing for an arbitrary number of latently infected compartments, the model allows for the approx-
imation of a wide class of distributions of latency durations. This is of particular importance for tuberculosis since latency
may last for years or even decades. In the model given here, the migration of only susceptible individuals has an influence
on the spread of the disease in two populations.

Let us give now the outlines of the paper. In Section 2, the model is constructed; the variables and parameters of the mod-
el are explained. In Section 3, the mathematical properties of the model are given. We present the computation of the bifur-
cation parameters Ri

0 using the method found in [29]. The equilibria of the model are computed: equilibrium without
disease, boundary equilibria (it is an equilibrium without one population), endemic equilibrium or coexistence equilibrium.
The complete stability of these equilibria are presented, using the bifurcation parameters Ri

0. In Section 4, numerical simu-
lations are done to illustrate the results. In Section 5, we give the conclusions and tree situations can be observed: the disease
can disappear in the two populations, can disappear just in one population and persist in the other, can persist in both the
two populations.

2. Model construction

The model is consisted by two sub-populations of a big one. For diseases like tuberculosis that confer temporary immu-
nity, the individual returns to the first latent class E1 after an immune period. The disease in each population can then be
described by a SE1 � � � EnI compartmental model, with staged progression to the disease. We have one class of susceptible
individuals (Si), n classes of latently infected individuals (Ei) and one class of infectious individuals (Ii), with i = 1, 2. The sub-
script i stands for population i. We assume that the transmission does not occurs during migration. The recruitment in each
population is only in the susceptible class and occurs at a constant rate Ki; only the susceptible individuals are concerned by
migrations at rate ai between the two populations. The infectious individuals does not migrate from one population to an-
other, because of medical reasons. The force of mortality is a constant li, i = 1, 2, for susceptible classes, lij, i = 1, 2,
j = 1,2, . . . ,n, for latently infected classes and lIi

, i = 1, 2, for infectious classes; the additional death rate due to disease affects
only the classes Ii and has constant rates di, i = 1, 2. Once latently infected with M. Tuberculosis, an individual will remain so
for life unless reactivation occurs. This is the reason of having n stages of progression. To account for treatment, we define
ri Ein as the fraction of infected individuals receiving effective chemoprophylaxis; then, cin = k(1 � r1). We assume that

Fig. 1. Transfer diagram for a two-patch model of tuberculosis, with migrations only between susceptible individuals at rate ai.

Table 1
Numerical values for the parameters of the model (1).

Parameters Description Estimated value/range Reference

K1 Recruitment rate into the S1 class 100/yr Assumed
K2 Recruitment rate into the S2 class 110/yr Assumed
b1 Transmission coefficient of infectious in the first sub-population variable Assumed
b2 Transmission coefficient of infectious in the second sub-population variable Assumed
l1 = l1i Force of mortality in the first sub-population 0.019896/yr Estimated
l2 = l2i Force of mortality in the second sub-population 0.019897/yr Estimated
c11 = c12 Rate of progression from the E11 class to the I1 class 0.00013/yr Assumed
c21 = c22 Rate of progression from the E21 class to the I2 class 0.00023/yr Assumed
c10 Rate of effective therapy in the I1 class 0.8182/yr Estimated
c20 Rate of effective therapy of in the I2 class 0.8183/yr Assumed
a1 Rate of migration of individuals from the susceptible class S1 to the susceptible class S2 0.07/yr Assumed
a2 Rate of migration of individuals from the susceptible class S2 to the susceptible class S1 0.0701/yr Assumed
d1 Additional death rate in the I1 class 0.0575/yr Assumed
d2 Additional death rate in the I2 class 0.05751/yr Assumed
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