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a b s t r a c t

Two-dimensional thermoelastic analysis for simply supported beams with variable thick-
ness and subjected to thermo-mechanical loads is investigated. An approximate analytical
method is proposed. Firstly, the heat conduction equation is analytically solved to obtain
the temperature distributions for two kinds of boundary conditions at the beam ends,
which are the harmonic series with unknown coefficients. Then the two-dimensional equi-
librium differential equations are analytically solved to obtain the displacement compo-
nent series with unknown coefficients and the stress component series is obtained. The
unknown coefficients in the temperature series and the stress component series are
approximately determined by using the upper surface and lower surface conditions of
the beam. With the proposed procedure, the solutions satisfy the governing differential
equations, the loading conditions, and the simply supported end conditions. The proposed
solution method shows a good convergence and the results agree well with those obtained
from the commercial finite element software ANSYS. Several examples are used to demon-
strate the effectiveness of the proposed solution method. The simultaneous effects of tem-
perature change and applied mechanical load on the behavior of the beam are examined.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that non-uniform beams may provide a better or more suitable distribution of mass and strength than
uniform beams and therefore can meet special functional requirements in architecture, robotics, aeronautics and other inno-
vative engineering applications. A great deal of attention had been paid to non-uniform beams and most of them were based
on the Bernoulli–Euler beam theory and the Timoshenko beam theory. For example, Lee et al. [1] studied the static deflection
of a non-uniform Bernoulli–Euler beam with general elastic end restraints. Romano and Zingone [2] obtained the closed form
solutions of beams with varying rectangular cross-section by solving the fourth-order differential equations with variable
coefficients. Zenkour [3] studied the elastic behavior of an orthotropic beam/one-dimensional plate of uniform and variable
thickness. Lee and Kuo [4] made the static analysis of non-uniform Timoshenko beams. Romano [5] obtained the closed form
solutions for Timoshenko beams with linearly and parabolically varying depth. Sapountzakis and Panagos [6] presented the
non-linear analysis of a composite Timoshenko beam with generally variable cross-section undergoing moderate large
deflections by employing the analog equation method.
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It should be mentioned that the Bernoulli–Euler beam theory for thin isotropic beams and the Timoshenko beam theory
for moderately thick beams generally can give accurate solutions with negligible error. However, with the increasing of the
thickness, the transverse shear deformation plays a more important role. In such a case, the classical beam theory based on
the Euler–Bernoulli hypothesis will lead to inaccurate or even erroneous results. Although the Timoshenko beam theory
takes into account the effects of transverse shear deformation and rotatory inertia, it is difficult to determine the required
shear correction factors for various thick beams. In such a case, the two-dimensional elasticity theory should be used which
can provide results with high accuracy. Based on the two-dimensional elasticity theory, Chen et al. [7] presented a mixed
method to analyze the bending and free vibration of uniform beams resting on Pasternak elastic foundation. Xu and Wu
[8] provided a two-dimensional analytical solution for simply supported composite beams with interlayer slips. Sankar
[9] obtained an elasticity solution for a functionally graded beam subjected to transverse loads. Lu et al. [10] presented
semi-analytical elasticity solutions for thermal deformations of functionally graded beams with various end conditions,
using the state space method based on differential quadrature. Xu and Zhou [11,12] obtained the elasticity solution of sim-
ply-supported functionally graded beams and multi-span beams with variable thickness, respectively. Moreover, Xu et al.
[13] presented the elasticity solution of clamped-simply supported beams with variable thickness. Recently, Xu and Zhou
[14] presented two-dimensional analysis of simply supported piezoelectric beams with variable thickness.

Thermoelasticity is often used to refer various phenomena associated with the interaction between deformation and heat
exchange occurring in a body. A monograph about coupled thermoelasticity was published by Biot [15]. Li and Zhou [16]
carried out the geometrically nonlinear analysis on Timoshenko beams under thermo-mechanical loads. Tanigawa et al.
[17] made the transient thermal stress analysis of a laminated composite beam. Sun et al. [18] studied the thermo-mechan-
ical deformation of an elastic beam with embedded shape memory alloy wires. Sayman [19] carried out an elastic–plastic
thermal stress analysis on steel fiber-reinforced aluminum metal–matrix composite beams. Kapuria et al. [20] presented
a new efficient higher order zigzag theory for thermal stress analysis of laminated beams subjected to thermal loads. Ching
and Yen [21] studied the transient thermoelastic deformations of 2-D functionally graded beams with non-uniformly con-
vective heat supply. Lu et al. [22] presented the two-dimensional thermoelasticity solution for functionally graded thick
beams. Vidal and Polit [23] derived a three-noded thermo-mechanical beam finite element to analyze the laminated beams.
Alibeigloo [24] presented an analytical solution for functionally graded material beams integrated with piezoelectric actu-
ator and sensor under an applied electric field and thermo-mechanical load. Ma and Lee [25] obtained an exact closed-form
solution for the nonlinear static responses of beams made of functionally graded materials subjected to a uniform in-plane
thermal load. Recently, Xu et al. [26] presented the three-dimensional thermoelastic analysis of rectangular plates with var-
iable thickness subjected to thermo-mechanical loads.

In this paper, the displacement and stress distributions of simply supported beams with variable thickness subjected to
thermo-mechanical loads are studied based on the two-dimensional thermoelastic theory. The temperature field is ex-
pressed as a harmonic series whereas the nonlinear temperature profile along the thickness is determined by solving the
heat conduction equation. Two typical boundary conditions on the beam ends are considered, which corresponds to two dif-
ferent series expansions. On the basis of two-dimensional thermoelasticity theory, the solutions of displacements and stres-
ses of the beam, which satisfy the governing differential equations and the boundary conditions at two ends of the beam, are
analytically derived. The unknown coefficients in the solutions are approximately determined by using the Fourier sinusoidal
series expansions to the upper surface and lower surface conditions of the beam. Solutions with high accuracy are presented.

2. Basic formulations

Consider a continuously varying thickness beam with the length L and the thickness H at the left end, as shown in Fig. 1.
The beam is simply supported at the two ends x = 0 and x = L (called as S–S beam). The upper surface of the beam is hori-
zontal and subjected to a steady state temperature load t(x) and a mechanical load q(x). The profile of its lower surface is
described by the continuous functions f(x).

Fig. 1. Beam with continuously varying thickness.
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