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a b s t r a c t

A numerical decomposition method proposed by Adomian provides solutions to nonlinear,
or stochastic, continuous time systems without the usual restrictive restraints. It is appli-
cable to differential, delay differential, integro-differential, and partial differential equa-
tions without the need for linearization or other restrictions. It also works through both
uncoupled boundary conditions as well as delay systems. In the following paper, a new
time discretization method for the development of a sample-data representation of a non-
linear continuous-time input-driven dynamical system is proposed. The proposed method
is based on both the zero-order hold (ZOH) assumption as well as the Adomian Decompo-
sition Method which exhibit unique algorithmic and computational advantages. To take
advantage of this method, the following steps must be followed. First, the method is
applied to a linear input-driven dynamical system to explicitly derive an exact sample-data
representation, producing proper results. Second, the method is then applied to a nonlinear
input-driven dynamical system, which thereby derives exact and approximate sample-
data representations, the latter being most suited for practical applications. To evaluate
the performance, the proposed discretization procedure was tested using simulations in
a case study which involved an illustrative two-degree-of-freedom mechanical system that
exhibited nonlinear behavior considering various control and input variable profiles. In
conclusion, the suggested algorithm, in comparison to the results of a Taylor-Lie series
expansion method, demonstrated increased performance and efficiency.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Due to the exponential development and widespread use of digital technology in the global market, an extensive imple-
mentation of advanced computer-based control and condition monitoring systems has infiltrated practically all major indus-
trial sectors. In particular, recent advances in digital microprocessor technology have brought considerable merit to digital
computer-controlling and monitoring systems with relatively low operational costs, flexible implementation, and simple yet
functional interactive communications through several control loops. Consequently, motivation to push the further develop-
ment of direct digital processes, system controls, and supervision methods remains a crucial point [1–3].

In current practice, advanced control strategies are employed for the dynamic behaviors of complex system processing
inducing the desirable sets of dynamic characteristics usually implemented using microcontrollers or digital signal processors.
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On the other hand, the associated control algorithms are developed in a discrete-time domain only. Below are two alternative
approaches that could be utilized in designing more productive digital computer-control systems:

(1) Develop a continuous-time control law on the basis of original continuous-time input-driven systems, followed by the
discretization of the closed-loop dynamics and the implementation of the above control law digitally through rapid
sampling. This method is based on the methodological principles of the so called discrete-equivalent design [4]. Notice
that the emulation of the continuous compensators with digital equivalents is a popular design method, used quite
extensively by control engineers [5–7].

(2) Obtain a sample-data representation of the original continuous-time input driven system (i.e. an accurate represen-
tation of its dynamics in the discrete-time domain directly through the employment of identification methods or a
reliable time-discretization method) and then directly synthesize a discrete-time controller to enforce the desirable
dynamic behavior to the controlled process/system [1,4,8,9]. This approach offers and attractive feature of dealing
directly with the sampling issue at hand. Indeed, the effect of sampling on the system-theoretic properties of a con-
tinuous-time system is crucial due to its strong influences in the ability to meet the primary control design objectives
[8,10–12].

It should be noted that, in both design approaches, the time-discretization of either controller’s or the original systems’
dynamic equations is required. However, for reasons stated previously, the second approach will be used in this study.

When using the linear systems theory, the problem of time-discretization of a continuous-time linear input-driven
dynamical system under the zero-order hold (ZOH) assumption can be fully solved. Thereafter, an exact sample-data repre-
sentation of the original system may be obtained in a straightforward manner [13]. In this, two distinguishable and equiv-
alent approaches may be considered:

(1) Capitalizing on the convolutional integral properties under a constant input value over the sampling interval. This
approach is based on (1) an integral-operator representation of the input/output behavior of the system (realized
by the convolution integral) and (2) appears to be quite effective for theoretical investigations on important sys-
tem-theoretic properties of the resulting sampled-data representation [14].

(2) Using this approach, the original problem is mathematically reformulated as a linear autonomous equation under the
zero-hold-order assumption, for which the standard solution techniques from linear, autonomous systems theory are
employed [8].

Most processes and systems encountered in practical uses are inherently nonlinear. As it is well known, (bio) chemi-
cal processes, computer networks, electrical and mechanical systems, and bio-systems are all governed by incredibly
complex dynamics. Any attempt to locally linearize these processes may cause poor identification and ultimately alternate
behavior [15]. Consequently, nonlinear controller synthesis’ and monitoring system design problems have been extensively
explored and researched over a range of years [16–20]. Furthermore, in light of the above considerations, the viability and
performance of digitally computer-based controls and monitoring supervision strategies critically depend on the selection
and properties of the underlying time-discretization methods that are applied to the original continuous-time input-driven
dynamical systems and processes. In the field of nonlinear systems analysis, the time-discretization problem is both difficult
and challenging. Traditionally, approximate sample-data representations of the original continuous-time nonlinear
dynamical system is obtained using some popular numerical techniques such as Euler and Runge-Kutta [21], which are suit-
able for the integration of nonlinear Ordinary Differential Equations (ODE’s). However, all of these approaches require a
‘‘small’’ time step in order to accurately function. This may not be the case in many process control and monitoring appli-
cations where large sampling periods are inevitably introduced due to physical and technical limitations. A thorough but
non-exhaustive sample of differing approaches with practical limitations is reported in [11,22]. Similarly, solid theoretical
results based on the direct use of discrete-time approximations in the control of sample-data nonlinear systems can be lo-
cated in [12,23].

Notice that the sampling period can be selected only after the analogue control system is designed, to ensure that the
continuous-time closed-loop bandwidth is known. Performance of this method is significantly affected by both the method
of discretization and the chosen sampling intervals. For example, standard methods such as the bilinear transformations of-
ten require high sampling rates to achieve adequate performance and retain closed-loop stability. In more specific cases, in
contrast, the sampling rate is constrained computational speeds of the microprocessor for digital control or by the measure-
ment scheme, for which low values are required [24].

Given that, the availability of a time-discretization scheme subject to low sampling rates and nonlinear control, accurate
discrete-time dynamic models for input-driven processes and systems would be beneficial in designing effective digital con-
trols and monitoring systems. Therefore, using the same concept, accurate dynamic models using large sampling rates under
nonlinear control can establish effective designs for future digital control and monitoring. To summarize, these actions fulfill
the purpose of a new time-discretization method for the nonlinear input-driven dynamical systems as outlined in the begin-
ning of this paper.

A numerical decomposition method proposed by Adomian provides solutions to nonlinear, or stochastic, continuous time
systems without the usual restrictive restraints. It is applicable to differential, delay differential, integro-differential, and
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