
Benchmarking the clustering algorithms for multiprocessor
environments using dynamic priority of modules

Pramod Kumar Mishra a,⇑, Abhishek Mishra b, Kamal Sheel Mishra c, Anil Kumar Tripathi b

a Department of Computer Science & DST Centre for Interdisciplinary Mathematical Sciences, Banaras Hindu University, Varanasi 221 005, India
b Department of Computer Engineering, Institute of Technology, Banaras Hindu University, Varanasi 221 005, India
c Department of Computer Science, School of Management Sciences, Varanasi 221 011, India

a r t i c l e i n f o

Article history:
Received 17 July 2010
Received in revised form 15 January 2012
Accepted 3 February 2012
Available online 15 February 2012

Keywords:
Benchmarking
Clustering
Distributed computing
Homogeneous systems
Scheduling
Task allocation

a b s t r a c t

In this paper we give some extensive benchmark results for some dynamic priority cluster-
ing algorithms for homogeneous multiprocessor environments. By dynamic priority we
mean a priority function that can change with every step of the algorithm. Using dynamic
priority can give us more flexibility as compared to static priority algorithms. Our objective
in this paper is to compare the dynamic priority algorithms with some well known algo-
rithms from the literature and discuss their strengths and weaknesses. For our study we
have selected two recently proposed dynamic priority algorithms: CPPS (Cluster Pair Priority
Scheduling algorithm) having complexity OðjV jjEjðjV j þ jEjÞÞ and DCCL (Dynamic Computation
Communication Load scheduling algorithm) having complexity OðjV j2ðjV j þ jEjÞlogðjV j þ jEjÞÞ
where jV j is the number of nodes in the task graph, and jEj is the number of edges in the task
graph. We have selected a recently proposed randomized algorithm with static priority
(RCCL: Randomized Computation Communication Load scheduling algorithm) and converted
it into a dynamic priority algorithm: RDCC (Randomized Dynamic Computation Communica-
tion load scheduling algorithm) having complexity OðabjV jðjV j þ jEjÞlogðjV j þ jEjÞÞ where a is
the number of randomization steps, and b is a limit on the number of clusters formed. We
have also selected three well known algorithms from literature: DSC (Dominant Sequence
Clustering algorithm) having complexity OððjV j þ jEjÞlogðjV jÞÞ, EZ (Edge Zeroing algorithm)
having complexity OðjEjðjV j þ jEjÞÞ, and LC (Linear Clustering algorithm) having complexity
OðjV jðjV j þ jEjÞÞ. We have compared these algorithms using various comparison parameters
including some statistical parameters, and also using various types of task graphs including
some synthetic and real task graphs. Our results show that the dynamic priority algorithms
give best results for the case of random task graphs, and for the case when the number of
available processors are small.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

A parallel system is designed so that it can execute the applications faster than a sequential system. For this we need to
parallelize the program. The three steps involved in the parallelization of a program [1] are: task decomposition, dependence
analysis, and scheduling. By scheduling we mean both the temporal allocation (assigning a start time to the task) and the

0307-904X/$ - see front matter � 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.apm.2012.02.011

⇑ Corresponding author.
E-mail addresses: mishra@bhu.ac.in (P.K. Mishra), abhishek.rs.cse@itbhu.ac.in (A. Mishra), ksmishra@smsvaranasi.com (K.S. Mishra), aktripathi.cse@

itbhu.ac.in (A.K. Tripathi).

Applied Mathematical Modelling 36 (2012) 6243–6263

Contents lists available at SciVerse ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier .com/locate /apm

http://dx.doi.org/10.1016/j.apm.2012.02.011
mailto:mishra@bhu.ac.in
mailto:abhishek.rs.cse@itbhu.ac.in
mailto:ksmishra@smsvaranasi.com
mailto:aktripathi.cse@ itbhu.ac.in
mailto:aktripathi.cse@ itbhu.ac.in
http://dx.doi.org/10.1016/j.apm.2012.02.011
http://www.sciencedirect.com/science/journal/0307904X
http://www.elsevier.com/locate/apm


spatial allocation (assigning a processor to the task). The tasks are allocated on different processors to exploit the parallelism
so that the parallel execution time of the tasks can be reduced.

A dependence relation among the tasks is represented as a directed acyclic graph, also known as the task graph. Nodes in
the task graph represent the tasks and have a weight associated with them that represents the running time of the task.
Edges in the task graph represent the dependence relation among the tasks and have a weight associated with them that
represents the communication time among the tasks.

The problem of finding a schedule for a given task graph on a given set of processors that takes minimum time is NP-Com-
plete [2, 3].

A fundamental scheduling heuristic is called the list scheduling heuristic. In list scheduling, first we assign a priority
scheme to the tasks. Then we sort the tasks according to the priority scheme, while respecting the precedence constraints
of the tasks. Finally each task is successively scheduled on a processor chosen for it. Some examples of list scheduling algo-
rithms are: Adam et al. [4], Coffman and Graham [5], Graham [6], Hu [7], Kasahara and Nartia [8], Lee et al. [9], Liu [10], Wu
and Gajski [11], Yang and Gerasoulis [12].

Another fundamental scheduling heuristic is called clustering. Basically it is a scheduling technique for an unlimited num-
ber of processors. It is often proposed as an initial step in scheduling for a limited number of processors. A cluster is a set of
tasks that are scheduled on the same processor. Clustering based scheduling algorithms generally consist of three steps. The
first step finds a clustering of the task graph. The second step finds an allocation of clusters to the processors. The last step
finds a scheduling of the tasks. Some examples of clustering based scheduling algorithms are Mishra et al. [13], Yang and
Gerasoulis [14], Kim and Browne [15], Kadamuddi and Tsai [16], Sarkar [2], Hanen and Munier [17].

Several benchmarking for task scheduling algorithms are proposed in literature [18, 19, 20, 21]. In this paper we give some
extensive benchmark results for some dynamic priority clustering algorithms for homogeneous multiprocessor environ-
ments. By dynamic priority we mean a priority function that can change with every step of the algorithm. Using dynamic pri-
ority can give us more flexibility as compared to static priority algorithms. Our objective in this paper is to compare the
dynamic priority algorithms with some well known algorithms from the literature and discuss their strengths and weak-
nesses. For our study we have selected two recently proposed dynamic priority algorithms: CPPS (Cluster Pair Priority
Scheduling algorithm) [22], having complexity OðjV jjEjðjV j þ jEjÞÞ and DCCL (Dynamic Computation Communication Load sched-
uling algorithm) [23], having complexity OðjV j2ðjV j þ jEjÞlogðjV j þ jEjÞÞwhere jV j is the number of nodes in the task graph, and
jEj is the number of edges in the task graph. We have selected a recently proposed randomized algorithm with static priority
RCCL (Randomized Computation Communication Load scheduling algorithm) [24], and converted it into a dynamic priority algo-
rithm: RDCC (Randomized Dynamic Computation Communication load scheduling algorithm) having complexity OðabjV jðjV jþ
jEjÞlogðjV j þ jEjÞÞ where a is the number of randomization steps, and b is a limit on the number of clusters formed. We have
also selected three well known algorithms from literature: DSC (Dominant Sequence Clustering algorithm) [14], having com-
plexity OððjV j þ jEjÞlogðjV jÞÞ, EZ (Edge Zeroing algorithm) [2], having complexity OðjEjðjV j þ jEjÞÞ, and LC (Linear Clustering algo-
rithm) [15], having complexity OðjV jðjV j þ jEjÞÞ. We have compared these algorithms using various comparison parameters
including some statistical parameters, and also using various types of task graphs including some synthetic and real task
graphs. Our results show that the dynamic priority algorithms give best results for the case of random task graphs, and
for the case when the number of available processors are small.

The rest of the paper is organized in the following manner: Section 2 presents a description of algorithms used in the
benchmarking, Section 3 gives a description of performance evaluation parameters used, Section 4 gives a description of task
graphs used, Section 5 gives the performance results for peer set task graphs, Section 6 gives the performance results for
random task graphs, Section 7 gives the performance results for systolic array task graphs, Section 8 gives the performance
results for Gaussian elimination task graphs, Section 9 gives the performance results for divide and conquer task graphs,
Section 10 gives the performance results for fast Fourier transform task graphs, Section 11 gives the performance results
for small random task graphs with optimal solutions, and finally we conclude in Section 12.

2. A description of algorithms used in the benchmarking

2.1. The CPPS algorithm

Mishra and Tripathi [22] consider the EZ algorithm [2] for scheduling precedence constrained task graphs on parallel sys-
tems as a priority based algorithm in which the priority is assigned to edges. In this case, the priority can be taken as the edge
weight. This can be viewed as a task dependent priority function that is defined for pairs of tasks. In the CPPS algorithm [22]
this idea is extended in which the priority is a cluster dependent function of pairs of clusters (of tasks):

PcðCi;CjÞ ¼ commðCi;CjÞ þ commðCj; CiÞ � compðCiÞ � compðCjÞ; ð1Þ

where PcðCi;CjÞ is the priority function that is defined for a pair of clusters, commðCi;CjÞ is the total communication cost from
the cluster Ci to the cluster Cj; commðCj;CiÞ is the total communication cost from the cluster Cj to the cluster Ci; compðCiÞ is
the total computation cost of the cluster Ci, and compðCjÞ is the total computation cost of the cluster Cj. This can be viewed as
a dynamic priority algorithm that depends on the current allocation in each step of the algorithm. The CPPS algorithm has
complexity OðjV jjEjðjV j þ jEjÞÞ.

6244 P.K. Mishra et al. / Applied Mathematical Modelling 36 (2012) 6243–6263



Download English Version:

https://daneshyari.com/en/article/1704204

Download Persian Version:

https://daneshyari.com/article/1704204

Daneshyari.com

https://daneshyari.com/en/article/1704204
https://daneshyari.com/article/1704204
https://daneshyari.com

