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a b s t r a c t

We consider one-dimensional fractional sub-diffusion equations on an unbounded domain.
For a problem of this type for which an exact or approximate artificial boundary condition
is available we reduce it to an initial-boundary value problem on a bounded domain. We
then analyze the numerical solution of the problem by polynomial and nonpolynomial
spline methods. The consistency and the Von Neumann stability analysis of these methods
are also discussed. Numerical experiments clarify the effectiveness and order of accuracy of
the proposed methods.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, the derivation of solutions to fractional differential equations has become a hot topic in many fields of
applied sciences and engineering. A large number of applied problems are formulated by fractional differential equations.
In spite of many papers on numerical methods for fractional differential equations, there is still a lack of highly accurate
numerical methods. The research on fractional order differential equations on unbounded domains is also of great impor-
tance. Using artificial boundary conditions (ABCs) is a widely used method for the solution of such problems [1].

There have been various applications of spline methods in the numerical solution of differential equations and partic-
ularly fractional differential equations, [2–5]. The author of [6] presented an implicit numerical method for fractional dif-
fusion equation, discretizing the fractional derivative by spline and using the Crank–Nicolson discretization for time
variable. The authors of [7] have developed a new nonpolynomial spline method for solving the second order hyperbolic
equations and obtained better numerical results than those produced by some finite difference methods. The authors of
[8] presented quadratic nonpolynomial spline approach for approximating the solution of a system of second-order
boundary value problems associated with obstacle, unilateral, and contact problems and obtained approximations more
accurate than those produced by collocation, finite difference and some standard polynomial spline methods. The authors
of [9] have constructed cubic nonpolynomial spline functions for solving the non-linear Schrodinger equation. The authors
in [4] have considered the numerical solution of the fractional boundary value problem (FBVP) by quadratic polynomial
spline. In [3], the authors have used parametric spline functions for the solution of time fractional Burgers equation. In this
paper, as a new investigation on the application and analysis of spline based methods for the solution of the problem in
hand, we will consider polynomial and nonpolynomial splines and compare the obtained results with those obtained by
finite difference method reported in [1].
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We consider the fractional differential equation on an unbounded domain expressed by

c
0Dc

t uðx; tÞ � duxxðx; tÞ ¼ f ðx; tÞ; ðx; tÞ 2 X ¼ ½0;þ1Þ � ½0;þ1Þ; ð1Þ

uðx;0Þ ¼ wðxÞ; x 2 ½0;þ1Þ; ð2Þ

uð0; tÞ ¼ /ðtÞ; t > 0; ð3Þ

uðx; tÞ ! 0; when x! þ1; t > 0; ð4Þ

where c
0Dc

t ð0 < c < 1Þ is the Caputo fractional derivative of order c defined by c
0Dc

t f ðtÞ ¼ 1
Cð1�cÞ

R t
0

f 0 ðsÞ
ðt�sÞc ds, and d > 0 is the dif-

fusion coefficient, f ðx; tÞ;wðxÞ and /ðtÞ are given functions and the support of f ðx; tÞ is the set X1 ¼ fðx; tÞj0 6 x � 1;0 6
t < þ1g and the support of wðxÞ is the interval ½0;1�.

For computing the numerical solution of problem (1)–(4), we use an artificial boundary C ¼ fðx; tÞjx ¼ 1; 0 6 t < þ1g.
Then the domain X can be divided into the spatially bounded set X1 and the unbounded set
X2 ¼ fðx; tÞj1 6 x < þ1; 0 6 t < þ1g.

On the domain X2; f ðx; tÞ � 0 and wðxÞ � 0. We will consider the following boundary condition from [1]:

@uð1; tÞ
@x

¼ �1ffiffiffi
d
p c

0Db1
t uð1; tÞ; b1 ¼

c
2
: ð5Þ

The Eq. (5) represents the exact boundary condition of the problem (1)–(4) on the artificial boundary
C ¼ X1 \X2 ¼ fðx; tÞjx ¼ 1;0 6 t < þ1g. By the boundary condition (5), the original problem (1)–(4) on the unbounded
domain X is then reduced to the following problem on the bounded domain X1:

c
0Dc

t uðx; tÞ � duxxðx; tÞ ¼ f ðx; tÞ; ðx; tÞ 2 X1; ð6Þ

uðx;0Þ ¼ wðxÞ; x 2 ½0;1�; ð7Þ

uð0; tÞ ¼ /ðtÞ; t > 0; ð8Þ

@uð1; tÞ
@x

¼ �1ffiffiffi
d
p c

0Db1
t uð1; tÞ; t > 0 ð9Þ

with the parameters defined as before.
We will investigate the spline approximate solution of this problem in the rest of paper as follows. In Section 2, we use

both polynomial and nonpolynomial spline functions for approximating the solution of the reduced problem (6)–(9). In
Section 3, the theoretical analysis of local truncation error and the Von Neumann stability of the presented methods will
be carried out. Finally, in Section 4, numerical results will be reported to illustrate the effectiveness and order of accuracy
of the discussed methods.

2. Derivation of the methods

In this section, we present polynomial and nonpolynomial spline methods for solving the problem (6)–(9) in the finite inter-
val ½0; T� (for the quadratic polynomial spline we use midknots). For the positive integers N and k, we take h ¼ 1

N ; s ¼ T
k as the

spatial stepsize and temporal stepsize, respectively. We use the notations xi ¼ ih; ð0 6 i 6 NÞ; tj ¼ js; ð0 6 j 6 kÞ; Xh ¼
fxij0 6 i 6 Ng; Xs ¼ ftjj0 6 j 6 kg; uj

i ¼ uðxi; tjÞ and zj
i ¼ zðxi; tjÞ.

The bounded domain ½0;1� � ½0; T� is then covered by Xh �Xs. For any mesh function w ¼ fwj
ij0 6 i 6 N;

0 6 j 6 kgdefined on Xh �Xs, the following notations are introduced:

wj
iþ1

2
¼ 1

2
wj

iþ1 þwj
i

� �
; wj

i�1
2
¼ 1

2
wj

i þwj
i�1

� �
; wj

i�3
2
¼ 1

2
wj

i�1 þwj
i�2

� �
:

Let zj
i be an approximate value of uðxi; tjÞ, obtained by the spline function piðx; tjÞ passing through the points ðxi; z

j
iÞ and

ðxiþ1; z
j
iþ1Þ.

2.1. Polynomial spline forms

2.1.1. Quadratic polynomial spline
Let us consider the quadratic polynomial spline piðx; tÞ in the form [4,10]

piðx; tjÞ ¼ aiðtjÞðx� xiÞ2 þ biðtjÞðx� xiÞ þ ciðtjÞ; i ¼ 0;1;2; . . . ;N � 1: ð10Þ
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