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a b s t r a c t

In this paper, the homotopy analysis method (HAM) is employed to solve the linear optimal
control problems (OCPs), which have a quadratic performance index. The study examines
the application of the homotopy analysis method in obtaining the solution of equations
that have previously been obtained using the Pontryagin’s maximum principle (PMP).
The HAM approach is also applied in obtaining the solution of the matrix Riccati equation.
Numerical results are presented for several test examples involving scalar and 2nd-order
systems to demonstrate the applicability and efficiency of the method.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Optimal control is one particular branch of modern control theory which has a wide range of practical applications not
only in all areas of physics but also in economy, aerospace, chemical engineering, robotic, etc. (see [1–4]).

Linear optimal control is a special sort of optimal control. The plant that is controlled is assumed linear, and the controller,
the device which generates the optimal control, is constrained to be linear. Many computational techniques have been devel-
oped for solving OCPs based on Pontryagin’s maximum principle [5] or Hamilton–Jacobi–Bellman equation[6]. Such as suc-
cessive approximation approach (SAA) [4], the modal series method [7], homotopy perturbation method (HPM) [8–10] and
differential transform method (DTM) [11].

The homotopy analysis method (HAM) is a powerful analytical tool for solving nonlinear problems. The HAM was first
proposed by Liao [12], by employing the basic ideas of homotopy in topology to produce an analytical method for solving
various nonlinear problems. This technique provides a simple way to ensure the convergence of the solution series, so that
we can always get accurate enough approximations. Furthermore, the homotopy analysis method logically contains the non-
perturbation methods such as Lyapunov’s artificial small parameter method [13], Adomian’s decomposition method [14] and
homotopy perturbation method [15]. Since Liao’s book [16] about the homotopy analysis method was published in 2003,
more and more researchers have been successfully applying this method to various nonlinear problems in science and engi-
neering, such as the viscous flows of non-Newtonian fluids [17], the KdV-type equations [18] and so on. This shows the great
potential of the HAM for strongly nonlinear problems in science and engineering.

In this paper, we consider the following linear optimal control problem
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min J ¼ 1
2

xðtf ÞT Sxðtf Þ þ
1
2

Z tf

t0

ðxT Pxþ 2xT Quþ uT RuÞdt;

s:t: _x ¼ AxðtÞ þ BuðtÞ; ð1Þ
xðt0Þ ¼ x0;

where x 2 Rn; u 2 Rm; A 2 Rn�n and B 2 Rm�n. The control uðtÞ is an admissible control if it is piecewise continuous in t for
each t. Its values belong to a given closed subset U of Rþ. The input uðtÞ is derived by minimizing the quadratic performance
index J, where S 2 Rn�n; P 2 Rn�n is positive semi-definite matrices, R 2 Rm�m is positive definite matrix and Q 2 Rn�m.

The contribution of our paper is to apply the HAM for solving the linear OCPs. The application of Pontryagin’s maximum
principle (PMP) to the linear OCPs results in a system of two point boundary value problem (TPBVP). As we will point out in
Section 2, we can achieve the feedback optimal control law, by using PMP.

The paper has been organized as follows. Section 2, describes the solution guidelines for linear optimal control system (1).
Section 3, presentation Steady-state Riccati equation. In Section 4, HAM is applied for solving optimal control problem. Fi-
nally, conclusions are given in the last section.

2. Solution guidelines for linear optimal control system

In this section, we present an efficient technique, based on the HAM, for solving linear optimal control problem (1).
According to the PMP, we have

_x ¼ ½A� BR�1Q T �x� BR�1BTk;
_k ¼ ½�P þ QR�1Q T �xþ ½QR�1BT � AT �k;

(
ð2Þ

with the condition xðt0Þ ¼ x0. Also, the optimal control law is

u� ¼ �R�1QT x� R�1BTk; ð3Þ

since xðtf Þ is indeterminate, then

kðtf Þ ¼ Sxðtf Þ: ð4Þ

system (2) is linear, therefore, we can write solution of system (2) in following form

x
k

� �
¼ /ðt; tf Þ

xðtf Þ
kðtf Þ

� �
; ð5Þ

where / is an 2n� 2n matrix. Also

/ðt; tf Þ ¼
Fðt; tf Þ Gðt; tf Þ
Lðt; tf Þ Mðt; tf Þ

� �
; ð6Þ

where F; G; L and M are n� n matrices. Now by applying the terminal condition kðtf Þ ¼ Sxðtf Þ and since F þ GS is invertible,
we have

kðtÞ ¼ ðLþMSÞðF þ GSÞ�1xðtÞ; ð7Þ

or

kðtÞ ¼ Yðt; tf ÞxðtÞ; ð8Þ

where

Yðt; tf Þ ¼ Lðt; tf Þ þMðt; tf ÞS
� �

Fðt; tf Þ þ Gðt; tf ÞS
� ��1

: ð9Þ

Differentiating Eq. (8) with respect to t, leads to

_kðtÞ ¼ _Yðt; tf ÞxðtÞ þ Yðt; tf Þ _xðtÞ; ð10Þ

Substituting _x; _k and k from Eqs. (2) and (8) into (10), we have

ð� _Y þ ðY Bþ QÞR�1ðBT Y þ Q TÞ � YA� AT Y � PÞxðtÞ ¼ 0:

Since the above equation must hold for all nonzero xðtÞ, then Yðt; tf Þ must satisfy the matrix Riccati equation,

_Y ¼ ðY Bþ QÞR�1ðBT Y þ Q TÞ � YA� AT Y � P: ð11Þ

By considering Eqs. (3) and (8), we can see that the optimal control law as

u�ðtÞ ¼ �R�1Q T x� R�1BT Yðt; tf ÞxðtÞ: ð12Þ
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