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a b s t r a c t

We analyze the influence of a SIS infectious disease affecting Preys or both Predators and
Preys in a Predator–Prey model. The response function used here is Holling function type II.
Many thresholds are computed and used to investigate the global stability results. The dis-
ease can disappear from the community, persist in one or two populations of the commu-
nity. At least one population can disappear from the community because of disease. In
some cases, the model exhibits periodic solutions with persistence of the disease or with-
out disease. Numerical simulations are used with nonstandard numerical schemes to
illustrate our results.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that Epidemiology and Ecology are two major and distinct fields of research. There are many epidemi-
ological models [1–15] and many ecological models [16–31], but certainly few models of the two fields. The main questions
regarding population dynamics concern the effects of infectious diseases in regulating natural populations, decreasing their
population sizes, reducing their natural fluctuations, or causing destabilizations of equilibria into oscillations of the popula-
tion states. With the Holling function response of type II, it is well known that the mortality of Preys due to predation
increases as well as the number of Preys decreases and become constant at the end.

There has been many Predator–Prey models with infectious diseases: Anderson and May [16] model in which the
pathogen tends to destabilize the Prey-Predator interactions; Hadeler and Freedman model [17] in which the authors con-
sidered that Predators could only survive on the Prey if some of the Preys were more easily caught due to being diseased;
Venturino model [18] with mass action incidence in which an SI or SIS disease spreads among either the Preys or the
Predators or the model given in [19] where he consider similar SI and SIS models with disease spread among the Preys
when there is logistic growth of Preys and Predators; Hudson et al., model [21] in which they considered the macropar-
asitic infections in red grouse and looked at situations in which parasitic infections of Preys made them more vulnerable
to predation. It is assumed in [20] that the Predators are infected when swallowing the infected Preys, and that the Preys
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are infected by contacting the excrement of the infected Predators. Generally, there are more macroparasitic infections
which can affect only Preys, only Predators, Preys and Predators. There are many works of Haque and coworkers
[25,26,29] concerning transmissible diseases spreading among the Prey or Predator population in Predator–Prey models
or symbiotic communities but although these models have some similarities with our models, there are many differences
concerning for example the horizontal incidence (mass incidence or standard incidence) or the presence of disease in the
community (Prey, Predator, Prey and Predator). In [30], the authors investigate the effect of delay in a Lotka–Volterra type
Predator–Prey model with a transmissible disease in the Predator species.

In the models considered in this paper, the Holling function response of type II is used for interactions between Predators
and Preys. The authors of [25] used the same kind of model with standard incidence but the disease was only in the Predator
population. The novelties in this paper are: Horizontal incidence follows standard incidence which is more appropriated for
large and non constant population; the form of response function when there is a disease with the coefficient h affecting
mortality and recruitment; the dynamics around origin is complicated because of standard incidence and population reaches
the origin either by following the axis or in spiral pattern; some numerical analysis are with nonstandard schemes. We also
include the possibility that infectious disease can persist in the Predator population and can be acquired by the Predators
during the predation process. Moreover, we use a nonstandard numerical scheme for some simulations. It has been proved
in [1] that the simulations can be very different using a nonstandard numerical scheme.

2. The model formulation

The Holling function response of type II is defined by hðHÞ ¼ B x0 H
1þB x1 H, where H denotes the Prey population, x0 and x1 de-

note respectively the time taking by a Predator to search and capture Preys, B is the predation rate per unit of time. Then, the
Predator–Prey model with Holling function of type II if P denotes the Predator population is

_HðtÞ ¼ r 1� H
K

� �
H � gðH; PÞ;

_PðtÞ ¼ egðH; PÞ � cP;

(
ð1Þ

where r denotes the intrinsic growth rate of the Preys, K is the carrying capacity of the environment, c is the mortality rate of
Predators, e is the coefficient in conversing Prey into Predator and gðH; PÞ ¼ B x0 H P

1þB x1 H.
When there is no Predator, the dynamics of Prey population is governed by the logistic equation _HðtÞ ¼ r 1� H

K

� �
H. The

function gðH; PÞ can also be written as gðH; PÞ ¼ a H P
1þa H, where a ¼ Bx0 denotes the Prey searching rate, a ¼ Bx1 denotes

the satiety rate of Predators. Setting b ¼ ea, the System (1) becomes

_HðtÞ ¼ r 1� H
K

� �
H � a H P

1þa H ;

_PðtÞ ¼ b H P
1þa H � cP:

(
ð2Þ

The SIS compartmental model in epidemiology with standard incidence is given by

_S ¼ b� lS� k I S
N þ r I;

_I ¼ k I S
N � r I � l I;

(
ð3Þ

where S denotes the susceptible population, I the infectious population, r is the recover rate of infectious individuals
to become susceptible such that N ¼ Sþ I is the total population, l is the mortality death rate. We assume that all
recruitments are in susceptible compartment at a constant rate b; k is the adequate contact rate between susceptibles
and infectious. If r ¼ 0, the model (3) becomes a simple SI model. The incidence is assumed to be standard
incidence.

Our task here is to combine the preceding models (2) and (3), in order to analyze the influence of SIS infectious disease in
a Predator–Prey community. The following hypothesis hold in our models.

1. (H1) In the absence of infection and predation, the Prey population grows logistically.
2. (H2) In the presence of infection, the Prey population are divided into two disjoint classes, namely, susceptible popula-

tion, and infected population.
3. (H3) The mode of disease transmission follows the standard incidence. The disease is spread among the Prey population

without Predators for the first model, with Predators for the second model and in the Prey and Predator populations for
the third and last model.

4. (H4) The disease is not genetically inherited. The infected population do not recover or become immune.
5. (H5) It is assumed that Predator cannot distinguish the infected and healthy Prey.
6. (H6) We assume that only susceptible Prey is capable of reproducing and contributing to its carrying capacity.
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