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a b s t r a c t

The stability of reaction-fronts in porous media is studied with analytical and numerical
methods. A stability criterion has been derived using linear stability analysis assuming a
sharp font. The sharp front assumption is an approximation of the mathematical model
in the limit of an infinite rapid reaction. The criterion shows that the stability of a sharp
reaction front is dependent on the permeability that develops behind it. The sharp front
is unstable for perturbations of any wave-length if the permeability increases behind the
front. The criterion shows that short wave-length perturbations are more unstable than
long wave-length perturbations. The sharp front is labile when the permeabilities are
the same at both sides of the front. This means that the perturbed front moves unchanged
forward. Finally, perturbations will die out in case the permeability decreases behind the
sharp front. The stability of non-sharp fronts are simulated numerically when dissolution
is by first order kinetics, the transport is by convection and diffusion and when the perme-
ability and specific reactive surface depends on the porosity. The numerical experiments
behave according to the stability criterion.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The injection of a reactive fluid into a porous medium leads to alteration of the reactive part of the solid rock matrix and
to changes of the porosity and permeability. Familiar examples are the dissolution of the matrix and increasing porosity in
carbonate rocks by CO2 rich brine [1,2]. The entire rock matrix may also be dissolved with the results that ‘‘wormholes’’ de-
velop Golfier et al. [3]. Under certain conditions of flow and reaction the alteration pattern becomes a reaction front. The
front is a transition from fully reacted to unreacted rock over a ‘‘short’’ distance. The reactive part of the matrix has fully
reacted behind the front and it is unreacted ahead of the front.

Laboratory experiments and simulation studies have shown numerous examples of reaction fronts that develop in an
unstable manner Golfier et al. [3]. Small perturbation on a linear front develops into fingers Ortoleva et al. [4]. The stability
of such reaction fronts has been studied by Chadam et al. [5,6], Ortoleva et al. [4] and [7] and more recently by Zhao et al. [8].
Through a linear stability analysis these authors obtained a critical pressure gradient as a condition for stability, where the
critical gradient is a function of the ratio of permeabilities ahead of and behind the front. The linear stability analysis was
based on a sharp front in the porosity and permeability, but not the concentration. Hirch and Bhatt [9] obtained analytical
results for the linear stability of reaction fronts in the cases of small and large wave numbers, and small variations in the
permeability. They are building on the work of Sherwood [10] and they take into account that the front has finite width.

Here we suggest a simpler linear stability analysis than the one developed by Chadam et al. [5], Sherwood [10], Ortoleva
et al. [4], Chadam et al. [6], Hirch and Bhatt [9] and Xin et al. [7]. It is derived for the limit of a sharp front (zero width), where
the porosity, permeability and concentration are step-functions. The derivation follows the same line of reasoning as applied
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to the stability of the interface between two immiscible fluids during vertical displacement in a Hele-Shaw cell, as for in-
stance shown by Marle [11]. This analysis gives a simple condition for the stability of sharp fronts in terms of the permeabil-
ities at the two sides of the front. The stability criterion shows that the stability of a sharp front depends on the permeability
that develops behind the front. It does not involve a critical pressure gradient that in turn depends on the ratio of the per-
meabilities of the two sides of the front, as shown by Chadam et al. [5], Ortoleva et al. [4], Chadam et al. [6] and Xin et al. [7].
Furthermore, the analysis presented here shows in a simple way how the stability depends on the wave length of the front
perturbation.

The stability of non-sharp fronts are studied numerically when dissolution is by first order kinetics, the transport of dis-
solved matter is by convection and diffusion and when the permeability and specific reactive surface depend on the porosity.
The sharp front assumption is an approximation of the mathematical model in the limit of an infinite rapid reaction. Numer-
ical solutions of the mathematical model demonstrate the different cases of stability when the reaction is restricted to a nar-
row zone.

The paper is organized as follows: The numerical model is first explained and the assumptions about permeability and the
specific surface area of the rock are then discussed. The stability criterion of sharp reaction fronts is presented, the derivation
of the stability condition is given, before numerical examples of stable, labile and unstable fronts are shown.

2. The mathematical model

The mathematical model consists of three coupled macroscopic equations as shown by Ortoleva et al. [4], Chadam et al.
[6] and Xin et al. [7]. They are solved on a rectangular domain of length l0, where the side at x ¼ 0 is the inlet and the opposite
side at x ¼ l0 is the outlet. The other sides are closed for fluid flow.

The first equation is the pressure equation that follows from conservation of fluid mass and Darcy’s law (see Appendix A)

r �
.f kð/Þ

l
rp

� �
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@/
@t
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where / is the porosity, .f is the fluid density, .s is the solid density, kð/Þ is the permeability, l is the viscosity and p is the
fluid pressure. The fluid density is taken to be constant, independent of the concentration of the dissolved solid, since it is
assumed that the concentration is low. The solid density is also taken to be constant. The pore space is assumed incompress-
ible and the porosity is changing only because of chemical reactions. A constant fluid density also implies that the fluid pres-
sure can be taken to be a fluid flow potential [12]. The pore space has an isotropic permeability kð/Þ, which changes with the
porosity. The right-hand-side of Eq. (1) is a source term that expresses that the solid matrix being dissolved enters the fluid
phase. It is shown in Appendix A that this source term has a negligible impact on the Darcy flow, and that it can be approx-
imated by zero. Boundary conditions for pressure Eq. (1) are a constant volume flux at the inlet and zero pressure at the out-
let. The initial fluid pressure is zero.

The dissolution of the porous matrix is modeled with a one-component reaction-transport equation

@ð/cÞ
@t
þr � c w� /Drcð Þ ¼ kd Sð/Þ 1� c
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where c is the concentration of the reactive species in the pore fluid (in units mol m�3) and w ¼ �ðk=lÞrp is the Darcy flux.
The term in parentheses, after the divergence-operator, accounts for transport of the dissolved species by Darcy flow and by
Fickian diffusion. The diffusivity in the fluid filling the pore space is denoted D (in units m2 s�1). The right-hand-side is a reac-
tion term, where dissolution is by first order kinetics. The reaction constant for dissolution is kd (in units mol s�1 m�2), the
specific (reactive) surface of the pore space is Sð/Þ (in units m2 m�3), and the specific reactive surface area changes with the
porosity. The equilibrium concentration is ceq. We notice that the right-hand-side is positive as long as c < ceq, and that it acts
as a source term. The boundary conditions are c ¼ 0 at the inlet and c ¼ ceq at the outlet and the pore fluid has initially
c ¼ ceq.

The third equation gives the rate of the change of porosity caused by the dissolution process as
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where the Vs is the molar volume of the reactive solid (in units m3 mol�1). The three Eqs. (1)–(3) are the basis of the reaction-
transport model.

It should be mentioned that the reaction-transport Eq. (2) can be approximated as
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by use of the expression (1) for fluid conservation. See also Eq. (53) for conservation of fluid mass in Appendix A. The approx-
imation on the right-hand-side follows from the assumption ceqVs � 1 since 0 6 c 6 ceq.
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