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a b s t r a c t

In this paper, we present the multilevel adaptive wavelet collocation method for solving
non-divergent barotropic vorticity equation over spherical geodesic grid. This method is
based on multi-dimensional second generation wavelet over a spherical geodesic grid.
The method is more useful in capturing, identifying, and analyzing local structure [1] than
any other traditional methods (i.e. finite difference, spectral method), because those meth-
ods are either full or partial miss important phenomena such as trends, breakdown points,
discontinuities in higher derivatives of the solution. Wavelet decomposition is used for
interpolation and adaptive grid refinement on different levels.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The barotropic vorticity equation model is an important equation in the research of the atmospheric sciences which de-
scribes the evolution of the vorticity of a fluid element as it moves around. It is a simplification of conservation law of
momentum for inviscid and incompressible fluid. For the theoretical investigations of the evolution of vortices, atmospheric
researchers are using the barotropic assumption, as there is no vertical component, i.e., single-layered fluid. Moreover, baro-
tropic model is useful for modeling the movement of tropical cyclones [2–4] and the interaction of two vortices in close prox-
imity to one another [5]. The barotropic assumption has also been used to model global wave patterns in the middle
troposphere [6,7]. But sometime to find analytic solutions of these type of problems are either not known or very difficult
to develop. Therefore, many scientists pay attention to the research of numerical methods of the equation [8–10].

Since atmospheric blockings are approximately stationary and relatively long-lived phenomena, so that one might at-
tempt to describe them in term of stationary solution of barotropic vorticity equation [11,12]. However the baropropic vor-
ticity equation on a sphere has known several stationary or longitudinally propagating solution, such as exact solution of
Rossby–Hauritz wave [13] and modons [14,15]. Examples of numerical solution obtained for Rossby–Hauritz wave [16]
and modons [17,14]. This solution of modon and Rossby–Hauritz is to be presented here with less computational cost
and clearly indicating the region of sharp gradient.

The theory and application of wavelets has become an active area of research in different fields, including electrical engi-
neering (signal processing, data compression), mathematical analysis (harmonic analysis, operator theory), and physics
(fractals, quantum field theory). Moreover, it also applied to seismic signal studies in geophysics; and applications in turbu-
lence studies in the atmospheric sciences. Basically application of signal analysis in atmosphere sciences has two main direc-
tions as followed: the singularity and the variance analysis.

0307-904X/$ - see front matter � 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.apm.2012.10.027

⇑ Corresponding author.
E-mail addresses: ratikanta_ma@student.iitd.ac.in (R. Behera), mmehra@maths.iitd.ac.in (M. Mehra).

Applied Mathematical Modelling 37 (2013) 5215–5226

Contents lists available at SciVerse ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier .com/locate /apm

http://dx.doi.org/10.1016/j.apm.2012.10.027
mailto:ratikanta_ma@student.iitd.ac.in
mailto:mmehra@maths.iitd.ac.in
http://dx.doi.org/10.1016/j.apm.2012.10.027
http://www.sciencedirect.com/science/journal/0307904X
http://www.elsevier.com/locate/apm


The current wavelet method can be classified in different ways depending on the above applications whether it take full
or partial advantage of wavelet analysis (i.e. multiresolution properties, wavelet compression, the detection of localized
structures and subsequent use for grid adaptation, fast wavelet transform, wavelet-based interpolation, and active error con-
trol) [18]. But still now it’s application for solving partial differential equations (PDEs) on general manifold is in infancy stage.
A new adaptive second generation wavelet collocation method for solving PDEs on sphere has recently been developed in
[19]. The adaptive wavelet collocation method is most appropriate for solving nonlinear PDEs with general boundary con-
ditions. This approach combines the adaptivity and error control of the adaptive wavelet method with the flexibility of col-
location. It has been verified by many authors in [20,21,1,22,23] over the flat geometry and [19,24] on sphere. Therefore, the
aim of this paper is to apply multilevel adaptive wavelet collocation method (MAWCM) for solving useful barotropic vortic-
ity equation on the sphere. Since wavelets are localized in both space and scale, we can clearly analyze local structure of any
kind. Furthermore the computational cost of the MAWCM is OðN Þ which is independent of the dimension of the problem,
where N is the total number of collocation points.

The paper is organized as follows, the brief introduction about second generation wavelet is given in Section 2. In Sec-
tion 3, we are discussing MAWCM to solve PDEs on the sphere. Moreover in section 4 we describe clearly how operators
(Jacobian operator and Laplace–Beltrami operator) are calculated on an adaptive grid. In Section 5, the numerical experiment
of two test cases are given. The conclusion is outlined in Section 6.

2. Spherical wavelets

Some of the first non-trivial wavelets that have been developed are the Daubechies wavelet [25], Coiflets [25,26], Meyer
wavelet [27] and Morlet wavelet [25,28]. These, and most other wavelets developed in the 1980s, are first generation wave-
lets whose construction requires the Fourier transform and whose basis functions have to be dilation and translation of sin-
gle function (mother wavelet). However, these wavelets were limited to flat geometries. The work by Swelden [29] overcome
these restrictions and led to the second generation wavelets on general manifold.

The construction of spherical wavelet (second generation wavelet) in [30] relies on recursive partitioning of the sphere
into spherical triangles. This is done staring from a platonic solid whose faces are spherical triangles. Here we consider
the icosahedral subdivision for which Kj ¼ 10� 4j þ 2 at subdivision level j. Let S be a triangulation of the sphere S and de-
note the set of all vertices obtained after subdivisions with Sj ¼ fpj

k 2 Sjk 2 Kjg, where Kj is an index set. Now the original
platonic solid icosahedral S0 contains only 12 vertices and the S1 contains those vertices and all new vertices on the edge
midpoints. Since Sj � Sjþ1 we also let Kj � Kjþ1. LetMj ¼ Kjþ1=Kj be the indices of the vertices added when going from level
j to jþ 1.

A second generation multi resolution analysis (MRA) [29] of the sphere provides a sequence V j � L2ðSÞwith j P 0; and the
sphere S ¼ fp ¼ ðpx; py; pzÞ 2 R3 : kpk ¼ rg, where r is the radius of the sphere:

� V j � V jþ1,
�
S

jP0V j is dense in L2ðSÞ,
� each V j has a Riesz basis of scaling functions f/j

kjk 2 K
jg.

Since /j
k 2 V

j � V jþ1, for every scaling function /j
k filter coefficients hj

k;l exists such that

/j
k ¼

X
l2Kjþ1

hj
k;l/

jþ1
l : ð1Þ

Note that the filter coefficients hj
k;l can be different for every k 2 Kj at a given level j P 0. Therefore each scaling function

satisfies a different refinement relation. Each MRA is accompanied by a dual MRA consisting of nested spaces ~V j with bases
by the dual scaling functions ~/j

k, which are biorthogonal to the scaling functions:

h/j
k;

~/j
�k
i ¼ dk;�k; for k; �k 2 Kj; ð2Þ

where hf ; gi ¼
RR

sfgdw is the inner product on the sphere. The dual scaling functions satisfy refinement relations with coef-
ficients f~hj

k;lg. The surface plot of scaling function and it’s cross cut along maximum and minimum are plotted in Fig. 1.
One most important thing when you are going to build MRA to construction of wavelets. They encode the difference be-

tween two successive levels of representation, that is there from Riesz basis for the space W, which is complement of V j in
V jþ1 (i.e. V jþ1 ¼ V j �W j). The construction of the wavelets form a Riesz basis for L2ðSÞ and allow a function to be represented
by its wavelet coefficients. Since W j � V jþ1, we can write

wj
k ¼

X
l2Kjþ1

gj
k;l/

jþ1
l ; ð3Þ

and the spherical wavelets wj
m have ~d vanishing moments, if ~d is the independent polynomials Pi; 0 6 i 6 ~d exist such that

hwj
m; Pii ¼ 0 8j P 0; m 2 Mj; ð4Þ
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