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a b s t r a c t

The problem of finding the exact analytical closed-form solution of some families of tran-
scendental equations, which describe two different physical phenomenon, thermionic
emission and electrical conductivity in semiconductors, is studied, in some detail, by the
Special Trans Functions Theory (STFT). The mathematical genesis of the analytical
closed-form solution is presented, and the structure of the theoretical derivation, proofs
and numerical results confirm the validity and base principle of the STFT. Undoubtedly,
the proposed analytical approach implies the qualitative improvement of the conventional
analytical and numerical methods.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

In any solid metal, some electrons are free to move from atom to atom in material. This is sometimes collectively referred
to as a ‘‘sea of electrons’’. Their velocities follow a statistical distribution, rather than being uniform, and occasionally an elec-
tron will have enough velocity to exit the metal without being pulled back in.

In 1901, Richardson published the results of his research in domain of the thermionic emission. The modern formulae
(demonstrated by Saul Dushman in 1923 and hence sometimes called the Richardson–Dushman equations) take the follow-
ing form [1,2]

JðW; TÞ ¼ AT2 exp �W
kT

� �
; ð1Þ

where J(W,T) is the emission current density [A/m2], T is the thermodynamic temperature of the metal [Kelvin (K)], W is the
work function of the metal, k is the Boltzmann constant, and A is Richardson–Dushman constant. Note that in the period
1911 to 1930, as physical understanding of the behavior of electrons in metals increased, Richardson put various different
theoretical expressions (based on different physical assumptions) for A. Over 60 years later, there is still no consensus
amongst interested theoreticians as to what the precise form of the expression for A should be, but the subject matter of this
manuscript is invariant of the theoretical precise form of constant A, and for our analysis A is an universal constant (Rich-
ardson constant) given by

A ¼ ðð4pmk2eÞ=ðh3ÞÞ ¼ 1:20173� 106 ½ðA=ðm2 K2ÞÞ�; ð2Þ
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where m and e are the mass and charge of an electron, respectively, and h is Planck’s constant.
Let us note that experimental values for the coefficient A are generally of the order of magnitude of A given in Eq. (2), but

do differ significantly as between different emitting materials, and can differ as between different crystallographic faces of
the same material.

After simple modification, Eq. (1) takes the form

WðW; JÞ ¼ bðW; JÞ expð�WðW; JÞÞ; ð3Þ

where

WðW; JÞ ¼ W
2kT

; bðW; JÞ ¼ W
2k

ffiffiffi
A
J

s
;

WðW; JÞ 2 Rþ; bðW; JÞ 2 Rþ:

ð4Þ

Let us note that after simple modification Eq. (3) takes the form

�WðW; JÞ ¼ �bðW; JÞ expð�WðW; JÞÞ

or form

ZðW; JÞ ¼ BðW ; JÞ expðZðW; JÞÞ ð4aÞ

since Z(W, J) = �W(W, J), B(W, J) = �b(W, J).
Thus, Eq. (3) is transformed in Eq. (4a).
In addition, we study the electrical conductivity in polycrystalline semiconductors for an arbitrary temperature range.

Thus, according to the Arrhenius relationship we have:

rDC ¼
A0

T
exp � Ea

kT

� �

where A0 and Ea represent the preexponential factor and activation energy, respectively, k is the Boltzmann’s constant. The
calculated values of activation energy and preexponential factor are given in [3].

At lower temperature range, Mott has proposed that DC conductivity in this case is given by [3–5]:

rDC ¼
r0

T2c exp � T0

T

� �c� �
;

where r0 and T0 are parameters of Mott model and the values of c are 1/2, 1/3, or 1/4. Of course, the above equations, for
some temperature range, takes the following general form

rDC ¼
r0

Tp exp � T0

T

� �q� �
; ð5Þ

where r0 and T0 are parameters for corresponding temperature range, and where p and q are integers or the inverse of
integers.

After simple modification Eq. (5) takes the form

T0

T

� �q

¼ rDCTp
0

r0

� �q
p

exp
q
p

T0

T

� �q� �
: ð6Þ

Thus, we have

Z ¼ B expðZÞ; Z ¼ q
p

T0

T

� �q

; B ¼ q
p

rDCTp
0

r0

� �q
p

;

T ¼ To

ðZp=qÞ
1
q
; 0 < B <

1
expð1Þ ; Z > 1:

ð7Þ

2. Obtaining the exact analytical closed form solution to the transcendental Eq. (3) (inverse thermionic emission
equation) by using the Special Trans Functions Theory – STFT

The Special Trans Functions Theory [6–15] (S.M. Perovich), for Eq. (3), gives an exact analytical closed form solution

WðW; JÞ ¼ tranþðbðW ; JÞÞ; ð8Þ

where tran+(b(W,J)) is a special tran function defined as

tranþðbðW; JÞÞ ¼ lim
x!1

ln
uðxþ 1; bðW ; JÞÞ

uðx;bðW; JÞÞ

� �� �
; ð9Þ
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