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a b s t r a c t

In this article, a general formulation for the fractional-order Legendre functions (FLFs) is
constructed to obtain the solution of the fractional-order differential equations. Fractional
calculus has been used to model physical and engineering processes that are found to be
best described by fractional differential equations. Therefore, an efficient and reliable tech-
nique for the solution of them is too important. For the concept of fractional derivative we
will adopt Caputo’s definition by using Riemann–Liouville fractional integral operator. Our
main aim is to generalize the new orthogonal functions based on Legendre polynomials to
the fractional calculus. Also a general formulation for FLFs fractional derivatives and prod-
uct operational matrices is driven. These matrices together with the Tau method are then
utilized to reduce the solution of this problem to the solution of a system of algebraic equa-
tions. The method is applied to solve linear and nonlinear fractional differential equations.
Illustrative examples are included to demonstrate the validity and applicability of the pre-
sented technique.

� 2012 Published by Elsevier Inc.

1. Introduction

Fractional derivatives have a long mathematical history, but they were not used in physics for many years. One possible
explanation of such unpopularity could be that there are multiple nonequivalent definitions of fractional derivatives [1]. An-
other difficulty is that fractional derivatives have no evident geometrical interpretation because of their nonlocal character
[2]. However, during the last 10 years fractional calculus starts to attract much more attention of physicists and mathema-
ticians. It was found that various, especially interdisciplinary applications can be elegantly modeled with the help of the frac-
tional derivatives. For example, the nonlinear oscillation of earthquake can be modeled with fractional derivatives [3], and
the fluid-dynamic models with fractional derivatives [4,5] can eliminate the deficiency arising from the assumption of con-
tinuum traffic flow. Based on experimental data fractional partial differential equations for seepage flow in porous media are
suggested in [6], and differential equations with fractional order have recently proved to be valuable tools to the modeling of
many physical phenomena [1,7]. A review of some applications of fractional derivatives in continuum and statistical
mechanics is given by Mainardi [8]. The analytic results on the existence and uniqueness of solutions to the fractional dif-
ferential equations have been investigated by many authors [1,9]. During the last decades, several methods have been used
to solve fractional differential equations, fractional partial differential equations, fractional integro-differential equations and
dynamic systems containing fractional derivatives, such as Adomian’s decomposition method [10–14], homotopy analysis
method [15–18], and other methods [19–24].
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Orthogonal functions have received considerable attention in dealing with various problems. The main characteristic be-
hind the approach using this technique is that it reduces these problems to those of solving a system of algebraic equations
thus greatly simplifying the problem. In the present paper, we intend to extend the application of the new orthogonal func-
tion based on Legendre polynomial to solve fractional differential equations. Our main aim is to generalize the fractional-
order Legendre function operational and product matrices to fractional calculus. It is worthy to mention here that, the
method based on using the operational matrix of an orthogonal function for solving differential equations is computer
oriented.

The remainder of this paper is organized as follows: we begin by introducing some necessary definitions and mathemat-
ical preliminaries of the fractional calculus theory. In Section 3, the fractional-order Legendre functions and their properties
is obtained. Section 4 is devoted to apply the FLFs operational matrices of fractional derivative and product to obtain the
solution of fractional differential equation. In Section 5, the proposed method is applied to several examples. Also a conclu-
sion is given in the last Section.

2. Preliminaries and notations

In this section, we give some basic definitions and properties of fractional calculus theory which are further used in this
article.

Definition 1. A real function f ðxÞ; x > 0 is said to be in space Cl; l 2 R if there exists a real number p > l, such that
f ðtÞ ¼ tpf1ðtÞ, where f1ðtÞ 2 Cð0;1Þ, and it is said to be in the space Cn

l if and only if f n 2 Cl; n 2 N.

Definition 2. The Riemann–Liouville fractional integral operator of order a > 0, of a function f 2 Cl; l P �1, is defined as

Iaf ðtÞ ¼ 1
CðaÞ

Z t

0
ðt � sÞa�1f ðsÞds; a > 0;

I0f ðtÞ ¼ f ðtÞ:

Definition 3. The fractional derivative of f ðtÞ in the Caputo sense is defined as

Daf ðtÞ ¼ Im�aDmf ðtÞ;

for m� 1 < a 6 m; m 2 N; t > 0 and f 2 Cm
�1.

Caputo fractional derivative first computes an ordinary derivative followed by a fractional integral to achieve the desired
order of fractional derivative. Some properties of the operator Da, which are needed here, are as follows

For f 2 Cl; l P �1; a; b P 0, c P �1; N0 ¼ f0;1;2; . . .g and constant C

ð1Þ DaDbf ðtÞ ¼ Daþbf ðtÞ;
ð2Þ DaC ¼ 0;

ð3Þ Datc ¼
0; c 2 N0 and c < a;

Cðcþ1Þ
Cðc�aþ1Þ t

c�a; Otherwise:

(
ð1Þ

Similar to the integer-order derivative, the Caputo fractional derivative is a linear operation

Da
Xn

i¼1

cifiðtÞ
 !

¼
Xn

i¼1

ciD
afiðtÞ; ð2Þ

where fcign
i¼1 are constants.

Now we define a generalization of Taylor’s formula involves Caputo fractional derivatives which is introduced by Odibat
and Momani [25].

Definition 4 (Generalized Taylors formula). Suppose that Dkaf ðxÞ 2 Cð0;1� for k ¼ 0;1; . . . ;m. Then we have

f ðxÞ ¼
Xm�1

i¼0

xia

Cðiaþ 1ÞD
iaf ð0þÞ þ xma

Cðmaþ 1ÞD
maf ðnÞ ð3Þ

with 0 < n 6 x; 8x 2 ð0;1�. Also, one has

f ðxÞ �
Xm�1

i¼0

xia

Cðiaþ 1ÞD
iaf ð0þÞ

�����
����� 6 Ma

xma

Cðmaþ 1Þ ; ð4Þ

where Ma P jDmaf ðnÞj.
In case of a ¼ 1, the generalized Taylor’s formula (3) reduces to the classical Taylors formula.
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