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a b s t r a c t

The formulation of higher order structural models and their discretization using the finite
element method is difficult owing to their complexity, especially in the presence of nonlin-
earities. In this work a new algorithm for automating the formulation and assembly of
hyperelastic higher-order structural finite elements is developed. A hierarchic series of
kinematic models is proposed for modeling structures with special geometries and the algo-
rithm is formulated to automate the study of this class of higher order structural models.
The algorithm developed in this work sidesteps the need for an explicit derivation of the
governing equations for the individual kinematic modes. Using a novel procedure involving
a nodal degree-of-freedom based automatic assembly algorithm, automatic differentiation
and higher dimensional quadrature, the relevant finite element matrices are directly com-
puted from the variational statement of elasticity and the higher order kinematic model.
Another significant feature of the proposed algorithm is that natural boundary conditions
are implicitly handled for arbitrary higher order kinematic models. The validity algorithm
is illustrated with examples involving linear elasticity and hyperelasticity.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The analysis of partial differential equations using the finite element method comprises of a series of steps: formulation of
the governing equations, discretization of the geometry, discretization of variables by specification of element-wise shape
functions, finite element assembly and post-processing of the solution to obtain the desired quantities of interest. Each of
these individual steps can be automated to varying extents, typically resulting in a higher level finite element framework
that improves the overall efficiency of the analysis. The formulation of finite element stiffness matrices in each element
of the discretized domain is typically carried out using a known algebraic form of the constituent terms. This process can
be automated to various levels and a variety of algorithms that partially or fully automate the finite element method have
been developed in the past [1–3]. This work deals with the automation of the finite element formulation and assembly of
higher order structural/waveguide models and extends an earlier work by the authors [4] that deals with the automation
of finite element analysis in the context of energy–momentum conserving integrators for 1D waveguides.

Automatic differentiation [5–7], also known as algorithmic differentiation, is used in this work for the exact calculation of
derivatives that arise in the finite element formulation. Automatic differentiation takes advantage of the internal representa-
tion of functions in the computer memory as compositions of basic functions and algebraic operators, and the chain rule of
differentiation [6]. Only the forward mode of automatic differentiation [6] is used in this work. It is implemented as a C++ class
with appropriate operator overloading that provides facility for handling dual numbers and automatic differentiation. While
automatic differentiation is used to numerically calculate the derivatives of the required functions that arise in the finite
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element computations, a significant feature of the proposed algorithm is to extend it to automate the formulation of the tan-
gents stiffness matrix in nonlinear finite element problems, without using an explicit algebraic form of the individual terms.
Thus the algorithm presented in this work also automates the linearization of nonlinear finite element variational forms.

A good approximation to the response of structures with special geometries like rods, beams, plates etc., can be obtained
by choosing appropriate kinematic models that take advantage of the special geometric features of the structure under con-
sideration [8–15]. These higher order models reduce the 3D problem to a lower dimensional equivalent and thus signifi-
cantly reduce the problem size. They provide a very good approximation to the actual response as long as the geometry
of the structure satisfies certain constraints and thus serve as an efficient alternative to a full 3D analysis.

The accuracy of a higher order structural model is directly related to how well the actual deformation is captured by the
higher order kinematic modes employed in the model. While the introduction of kinematic modes reduces the problem to a
lower dimensional equivalent, the use of a large number of modes makes it cumbersome to formulate the governing equa-
tions for the structural response. Models with very few modes are sufficient to study linear response under small loads, but
they may not be sufficient when nonlinearities are present and/or when large loads are applied. The necessity of higher order
modes is especially important for studying the high frequency response of structures [12,16]. However, with higher order
models the governing equations take a very complicated form [11,12,17]. For nonlinear problems, in addition to the difficulty
of deriving the governing equations for the individual kinematic modes, the calculation of the tangent stiffness matrix, which
involves the linearization of the governing equations, becomes very cumbersome. Computer algebra systems may not be effi-
cient as the number of modes increases and it is even more difficult to cast them in a finite element framework. To alleviate
these difficulties, a class of hierarchic higher order kinematic models and a new algorithm that automates the finite element
formulation and assembly of these higher-order structural models are developed in this work. The algorithm automates the
formulation the tangent stiffness matrices directly from a given kinematic model without requiring an algebraic derivation
of the governing equations for the individual modes.

The algorithm is developed within a general variational framework and is thus applicable to both linear and nonlinear
problems. Another advantage of using a variational framework is that the natural boundary conditions are implicitly taken
care of in the formulation [13,14]. The difficulty of treating natural boundary conditions becomes pronounced for higher or-
der kinematic models even in the linear case. For nonlinear problems it is very difficult to satisfy the natural boundary con-
ditions, primarily because kinematic models impose restrictions on the variation of the displacement variables and hence do
not directly deal with the stresses. Hence the stress–strain equations need to be solved for satisfying the natural boundary
conditions. While this is possible in the case of linear elasticity, it is not feasible for general nonlinear models. In this work,
this problem is automatically handled for arbitrary higher order kinematic models and the natural boundary conditions are
satisfied, to the accuracy of the kinematic approximation, without any need to derive them separately as would be required
in a conventional formulation.

Higher order kinematic models typically use polynomials in the lateral (thickness) coordinate variables to model the kine-
matic modes. For linear problems these terms typically factor out as the area or the moment of inertia. For higher order non-
linear structural problems it is cumbersome to calculate all these factors algebraically. In the present method, this problem is
eliminated based on the observation that these factors, typically lower order polynomials, can be exactly evaluated with the
use of appropriate numerical quadratures over the cross-section, thus avoiding the need for an explicit derivation of their
algebraic form. Thus numerical integration is performed in all three dimensions even for a 1D or 2D waveguide model. This
use of higher dimensional quadrature for solving a lower dimensional structural model is another unique feature of the pro-
posed algorithm.

The three main themes introduced above – an algorithm for automatic finite element assembly of a given variational
form, automatic differentiation and a novel procedure to integrate arbitrary higher order structural models directly into
the variational framework – are developed and synthesized into a new and flexible procedure for studying higher order
structural finite elements. The validity of the proposed procedure is illustrated with a variety of examples. While full geo-
metric nonlinearity is considered in this work, only the hyperelastic form of material nonlinearity is demonstrated in the
analysis. The procedure however is quite general and can be extended for other types of material nonlinearities.

The outline of the paper is as follows: the governing equations of elasticity and hyperelasticity are summarized first. A
hierarchic class of higher order structural models that are subsequently used for illustrating the automatic algorithm is then
introduced. A brief discussion of automatic differentiation and the basic algorithm for automatic finite element assembly is
presented next in the context of a general variational form. The algorithm is then extended for the case of higher order struc-
tural elements. The exposition given here generalizes the earlier work by the authors [4] and some of the underlying con-
cepts are presented again for clarity and completeness. The key advantages of the algorithm are seen when it is applied
to higher order structural models, especially in the nonlinear case. This is the crux of the current work and the full procedure
which combines the advantages of the automatic assembly algorithm and automatic differentiation for higher order nonlin-
ear structural models is finally discussed with a few illustrative examples.

2. Governing equations of elasticity

The governing equations of linear elasticity and hyperelasticity in cartesian coordinates are summarized in this section to
the extent they are required. The Murnaghan form of hyperelastic behaviour is introduced as a special nonlinear material
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