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a b s t r a c t

The basic aim of this study is to introduce and describe a patching approach based on a
novel combination of the variational iterative method (VIM) and adaptive cubic spline col-
location scheme for the solution of a class of self-adjoint singularly perturbed second-order
two-point boundary value problems that model various engineering problems. The domain
of the problem is decomposed into two subintervals: the VIM is implemented in the vicin-
ity of the boundary layer while in the outer region the resulting problem is tackled by
applying an adaptive cubic spline collocation scheme (ASS), which comprises the use of
mapping/transformation redistribution functions or constructed grading functions.

Numerical results, computational comparisons, appropriate error measures and illustra-
tions are provided to testify the convergence, efficiency and applicability of the method.
Performance of this method is examined through test examples that reveal that the current
approach converges to the exact solution rapidly and withOðh4Þ accuracy and that the con-
vergence is uniform across the domain. The proposed technique yields numerical solutions
in very good agreement with and/or superior to existing exact and approximate solutions.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The main purpose of this article is to present and describe a numerical patching technique based on the VIM and a fourth-
order adaptive cubic spline collocation scheme for the numerical solution of the subsequent class of self-adjoint singularly
perturbed second-order two-point boundary value problems.

Ly � �� aðxÞy0ð Þ0 þ bðxÞy ¼ gðxÞ; ð1Þ

defined on ½0;1� and satisfying the boundary conditions:

yð0Þ ¼ a yð1Þ ¼ b; ð2Þ

where � is a small positive parameter and aðxÞ; bðxÞ and gðxÞ are smooth functions. In addition, we enforce the following con-
ditions on these coefficients to warrantee that the operator Ly satisfy a maximum principle [1]:

aðxÞP a� > 0; a0ðxÞP 0; bðxÞP b� > 0:

The class of perturbed problems 1,2 occurs in science and engineering applications, such as, quantum mechanics, fluid
mechanics, chemical-reactor theory, aerodynamics, optimal control, reaction–diffusion process, and geophysics. This class
is a broadly studied model that has been discussed reasonably extensively in various papers that appear in the literature.
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From the numerical point of view, many schemes for this model have been presented and analyzed. The majority of the
existing numerical approaches are based on finite element methods (see [2,3]) or uniformly second-order accurate and
three-point difference schemes (see [4–6]), B-spline collocation (see [7,8]), finite difference method with variable mesh
(see [9]), and a designed wavelet optimized finite difference scheme (see [10]).

In recent years the VIM has been the focus of numerous articles which is utilized for attaining exact and/or numerical
solutions for a wide range of nonlinear equations including algebraic, differential, partial-differential, functional-delay
and integro-differential equations (see [11–13] and the references therein). The approach is efficient and handles the dif-
ferential equations without imposing restrictive assumptions that may change the physical structure of the solutions. The
wide-ranging and successful implementation of the VIM has demonstrated and confirmed that the method is a powerful
mathematical tool for treating an assortment of linear and nonlinear problems. The main thrust of the technique method
is based on constructing a correction functional using a general Lagrange multiplier, which is selected in a proper way
that its correction solution is improved with respect to the initial approximation or to the trial function. The resulting
solution is in the form of a successive approximations that often converge to the exact solution or its Taylor’s series
expansion.

On the other hand, the cubic B-spline finite element collocation approach is widely used for the numerical solution of a
broad range of nonlinear problems [14] arising in various applications (see [15–18] and the references therein. In particular
and besides the VIM, we will also manipulate an adaptive grid technique [19,20], based on cubic B-spline collocation on non-
uniform Shishkin-like meshes (see [21–23]). This technique necessitates the redistribution of the nodes in order to have
more points placed in regions of large variation of the solution, for instance those close to layers or near singularities. That
is, the mesh is constructed in an proper way so that it is finer near the boundary layer or the singularity but coarser other-
wise. The cubic spline collocation method is integrated with the adaptive technique ASS to solve the problem on nonuniform
meshes via mapping uniform node points to non-uniform ones such that the errors are reduced and are uniformly
distributed.

The main goal of the present article is to suggest a numerical patching method for tackling the model problem 1,2. The
approach is based on a combination of the VIM and ASS. Certain deficiencies of the VIM and the difficulty of the art of choos-
ing the nonuniform mesh using an appropriate mapping function or grading functions when applying the cubic spline col-
location methods have motivated the investigation of a patching method that combines both. The VIM, which converges
rather fast locally and is very accurate near the boundary layer, is applied in a small neighborhood about the layer. The set-
back of the VIM is that it the convergence deteriorates quite noticeably as the applicable domain increases. That is, it yields
only a local accurate approximation using only few iterations while many more iterates are needed for values away from the
origin but that might result in computational challenges and an increase in rounding error. In contrast, the cubic spline col-
location provides global estimation of the solution, however, the challenge and/or complexity of the scheme is that an effort
and a skill is necessary for the selection of mesh in order to obtain satisfactory approximation especially in the presence of
singularity or boundary layer. To surmount the slow convergence concern of the VIM away from the origin, we use a fourth-
order ASS to approximate the solution away from the origin.

The efficiency and accuracy of the numerical scheme is assessed on specific test problems. The numerical outcomes indi-
cate that the method yields highly accurate results. The numerical solutions are compared with analytical and other existing
numerical solutions in the literature. The convergence analysis is discussed and it is verified that the method has a fourth-
order rate of convergence using the double-mesh principle.

The balance of this paper is organized as follows. In Section 2, the numerical patching method is presented and described
for the numerical solution of the class of self-adjoint singularly perturbed equations. In Section 3, a number of test problems
are discussed to assess the accuracy of the technique. The last Section 4 includes a conclusion that briefly summarizes the
numerical outcomes.

2. Numerical method

In this section, we describe the patching method and present the ASS and VIM strategies.

2.1. Variational method procedure

We begin by summarizing the variational iterative method as it applies to the singular perturbation problem 1,2. The cor-
rection functional for Eq. (1) is given by

ynþ1ðxÞ ¼ ynðxÞ þ
Z x

0
kðsÞ �� aðsÞðynÞs

� �
s þ bðsÞ~yn � gðsÞ

� �
ds; n ¼ 0;1;2; . . . ; ð3Þ

where ~yn is a restricted variation (d~yn ¼ 0).
Next we need to find the optimal value of kðsÞ. To achieve that, we first operate the variation with respect to ynðxÞ on both

sides of the latter equation. We have

dynþ1ðxÞ ¼ dynðxÞ þ d
Z x

0
kðsÞ �� aðsÞðynÞs

� �
s þ bðsÞ~yn � gðsÞ

� �
ds

� �
ð4Þ
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