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a b s t r a c t

In many scientific and practical tasks, the classical concepts for parameter identification
are satisfactory and generally applied with success, although many specialized problems
necessitate the use of methods created with specifically defined assumptions and condi-
tions. This paper investigates the method of parameter identification for the case where
losses resulting from estimation errors can be described in polynomial form with addi-
tional asymmetry representing different results of under- and overestimation. Most impor-
tantly, the method presented here considers the conditionality of this parameter, which in
practice means its significant dependence on other quantities whose values can be
obtained metrologically. To solve a problem in this form the Bayes approach was used,
allowing a minimum expected value of losses to be achieved. The methodology was based
on the nonparametric technique of statistical kernel estimators, which freed the investi-
gated procedure from forms of probability distributions characterizing both the parameter
under investigation and conditioning quantities. As a result an algorithm is presented,
ready for direct use without further intensive research and calculations.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Parameter identification [1], i.e. assigning a concrete value to a parameter present in a model, despite its very traditional
nature, has still great significance in modern scientific and applicational problems. Moreover, its importance continuously
increases together with the dominance of model-based methods and the growing, often specific, demands made on models
used in science and practice. At the same time, the increasing complexity and novelty of current methods is accompanied by
a decrease in the classical understanding of parameter identification as a task of fixing a concrete value of a parameter which
exists objectively in reality but is unknown. Here, through investigating, the researcher attempts to get as close as possible to
this ‘‘true’’ value. In fact more frequently in contemporary models, their particular parameters describe an entire range of
complex phenomena, simplified in a model to one parameter, existing only formally – without concrete physical form. In
this situation the quality of parameter identification cannot be evaluated by classical means, obtaining a value as near as
possible to an imagined ‘‘true’’ parameter value (since it does not exist), but rather by accounting for the influence of par-
ticular parameter values on a considered system, whose part is the investigated model. This moves the mathematical appa-
ratus applied here – present within point estimation – from classical mathematical statistics [2], towards the currently
intensively-studied data analysis [3]. Fortunately, the development of modern sophisticated and often specific methods of
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parameter identification is facilitated by the dynamic expansion of contemporary computer technology, supported on the
theoretical side by the procedures of advanced information technology [4].

The subject of this paper is an algorithm for parameter identification, i.e. estimation of the value of a parameter occurring
in a model, based on four premises:

1. minimization of expected value of losses arising from estimation errors, unavoidable in practice;
2. asymmetry of those losses, i.e. allowing for situations where losses occurring through underestimation are substantially

different from losses resulting from overestimation;
3. arbitrariness of probability distributions appearing in the problem;
4. and finally–worth particularly highlighting–conditionality of an identified parameter, that is its significant dependence

on a factor (or factors), with values that can be in practice obtained metrologically.

The realization of the first will be through application of the Bayes approach [5].
The second by assuming the loss function resulting from estimation errors, in the asymmetrical form

lðŷ; yÞ ¼ ð�1Þkal ðŷ� yÞk for ŷ� y 6 0;

ar ðŷ� yÞk for ŷ� y P 0;

(
ð1Þ

with the given degree k 2 N n f0g , where the coefficients al and ar are positive, while y and ŷ denote the values of the param-
eter under consideration and its estimator, respectively. The fact that the coefficients al and ar may differ causes an asym-
metry of the above function and enables the inclusion of different losses implied by over- and underestimation of the
examined parameter. Limiting the form of function (1) to a polynomial seems not to decrease the generality of consider-
ations in practical applications, offering an effective compromise between precision and complexity of results obtained.
Moreover the possibility of change of the polynomial degree k – with respect to that resulting from fundamental research
– allows a differing scale of protection against large estimation errors.

The third aspect is realized by applying nonparametric methodology of statistical kernel estimators [6–8] for calculating
probability characteristics.

Lastly – and worth highlighting once more – this paper is aimed at the conditional approach, i.e. where the value of the
estimated parameter is strongly dependent on a conditional factor, for example in engineering practice it is often a current
temperature. If the value of such a factor is metrologically available, then its inclusion can make the used model significantly
more precise.

The goal of this paper is the provision of an algorithm for calculating a conditional parameter value, optimal in the sense
of minimum expectation value of losses, in particular those different for under- and overestimation. The above value is
determined for a fixed (most often current) value of a conditional factor, based on measurements of this parameter obtained
earlier for different conditioning values. The algorithm is comprehensive and can be applied directly without detailed knowl-
edge of theoretical aspects, laborious research or analytical calculations. It is sufficient data to take only the measurements of
pairs of the model parameter value, and the conditional factor value for which this parameter value was obtained, as well as
the quantities introduced in formula (1): the degree k and the ratio of coefficients al=ar .

Thus, Section 2 outlines the statistical kernel estimators method. The algorithm worked out is described in Sections 3 and
4, with the asymmetrical linear case in Section 3.1, the asymmetrical quadratic in Section 3.2, and the asymmetrical poly-
nomial (in particular cubic) in Section 3.3. Finally, Section 5 presents the results of experimental verification of the investi-
gated procedure. Section 6 provides a summary of the presented method.

The preliminary version of this paper was presented as [9].

2. Preliminaries: statistical kernel estimators

Let the n-dimensional random variable X be given, with a distribution characterized by the density f . Its kernel estimator
f̂ : Rn ! ½0;1Þ, calculated using experimentally obtained values for the m-element random sample

x1; x2; . . . ; xm; ð2Þ

in its basic form is defined as

f̂ ðxÞ ¼ 1
mhn

Xm

i¼1

K
x� xi

h

� �
; ð3Þ

where m 2 N n f0g, the coefficient h > 0 is called a smoothing parameter, while the measurable function K : Rn ? [0,1) of
unit integral

R
Rn KðxÞdx ¼ 1, symmetrical with respect to zero and having a weak global maximum in this place, takes the

name of a kernel. The interpretation of the above definition is illustrated in Fig. 1 for a one-dimensional random variable.
In the case of the single realization xi, the function K (transposed along the vector xi and scaled by the coefficient h) repre-
sents the approximation of distribution of the random variable X having obtained the value xi. For m independent realiza-
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