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a b s t r a c t

This paper suggests an iterative parametric approach for solving multiobjective linear frac-
tional programming (MOLFP) problems which only uses linear programming to obtain effi-
cient solutions and always converges to an efficient solution. A numerical example shows
that this approach performs better than some existing algorithms. Randomly generated
MOLFP problems are also solved to demonstrate the performance of new introduced
algorithm.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

A multiobjective fractional programming (MOFP) problem optimizes several ratio objective functions over a feasible re-
gion. It is called a multiobjective linear fractional programming (MOLFP) problem when the numerators and denominators of
the objective functions are linear and the feasible region is a polyhedron. Fractional objectives appear in many real world
situations. For instance, we often need to optimize the efficiency of some activities like cost/time, cost/profit, and output/em-
ployee. For an overview of these applications, we refer to [1,2] and the references therein.

Fractional objectives with convex numerators and denominators are not convex and even linear fractional objectives are
only quasiconvex [2]. Thus, solving MOFP problems or even MOLFP problems is usually difficult and sometimes finding even
one efficient solution is of importance. Kornbluth and Steuer [3] presented a simplex based algorithm to find a weakly effi-
cient set of MOLFP problems. They also used a goal programming approach for MOLFP problems [4]. Nykowski and Zolkiew-
ski [5] proposed a compromise procedure to obtain extreme efficient solutions. Metev and Gueorguieva [6] used nonlinear
programming for finding a weakly efficient set of solutions. Caballero and Hernandez [7] computed a discrete estimation of
weakly efficient set of solutions. Cambini et al. [8] reviewed methods for solving biobjective linear fractional programming.
In addition, many researchers investigated solving sum of linear ratios problems by iterative algorithms [9–14].

Dinkelbach [15] used a parametric approach to solve linear fractional programming problems. Several authors extended
Dinkelbach’s approach to solve several problems involving fractional objectives such as generalized fractional programming
problems [16,17] and the minimum spanning tree with sum of ratios problems [18]. Almogy and Levin [19] extended the
parametric approach of Dinkelbach [15] to solve sum of ratios problems. However, Falk and Palocsay [20] showed that
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the approach in [19] does not always lead to appropriate solutions. In [12], they extended the parametric approach of Din-
kelbach to solve sum of ratios, product of ratios and product of linear functions. Tammer et al. [21] also extended Dinkel-
bach’s approach to solve MOLFP problems. In their approach, estimating the parameters was based on solving some
equations. However, their approach does not necessarily guarantee an efficient solution. Using the parametric approach
of Dikelbach, Gomes et al. [22] introduced an MOLP problem with a weighted version to deal with an MOLFP problem. How-
ever, they only give some optimality conditions. Although Dinkelbach’s approach has been used to solve many different
problems involving fractional objectives, there is no absolutely successful extension to solve MOLFP problems.

The current paper attempts to propose an iterative algorithm that extends Dinkelbach’s approach [15] to solve MOLFP
problems. It considers a parametric linear objective function and inserts new constraints so that the convergency of the algo-
rithm is guaranteed. Also, if each objective is a ratio of a convex (concave) function over a concave (convex) one, and the
feasible region is convex, then in each iteration a convex (concave) problem must be solved and convergency still holds.
Since the proposed algorithm is iterative, it is compared with the iterative technique presented by Costa [9]. The technique
of Costa [9] is interesting since it performs well in comparison with the existing techniques such as those of Kuno [13], Phu-
ong and Tuy [14] and Dai et al. [11]. It must be mentioned that Costa and Alves [10] presented another iterative method that
is slightly different from Costa [9]. This paper presents a brief survey of Costa’s technique [9].

The rest of the paper is organized as follows: Section 2 introduces some notation, definitions, and basic theorems. The
techniques of Costa [9] and Costa and Alves [10] are stated briefly in Section 3. Section 4 presents the main results of our
algorithm and the proof of its convergency. In Section 5, the proposed technique is compared with Costa’s technique and
some examples are presented. Finally, Section 6 is devoted to some concluding remarks.

2. Preliminaries

The MOLFP problem can be formulated as [3]:

max ZðxÞ ¼ z1ðxÞ; . . . ; zpðxÞ
� �t

s:t: x 2 X ¼ fx 2 Rn : Ax 6 b; x P 0g;
ð1Þ

where
X is compact, A 2 Rm�n; b 2 Rm, ziðxÞ ¼ NiðxÞ

DiðxÞ
¼ aixþbi

cixþdi
(ai; ci 2 Rn; bi, di 2 R for i ¼ 1; . . . ; p), and t stands for transpose.

It is customary to assume that DiðxÞ ¼ cixþ di > 0;8x 2 X. Moreover, since X � Rn, then Rn is called the decision space. Let
Y ¼ ZðXÞ ¼ fZðxÞ ¼ ðz1ðxÞ; . . . ; zpðxÞÞt : x 2 Xg, then since Y � Rp, Rp is called the objective space.

In Problem (1), the optimal solution for one function is not necessarily optimal for the other functions, and hence the no-
tions of ‘‘efficient solutions’’, ‘‘e-efficient solutions’’, and ‘‘weakly efficient solutions’’ are introduced [23].

Definition 2.1 (See for instance [23]). A point �x 2 X is an efficient solution of Problem (1) if there is no other x 2 X such that
ziðxÞP zið�xÞ for all i ¼ 1; . . . ; p and zjðxÞ > zjð�xÞ for at least one j.

Definition 2.2 (See for instance [24]). Let 0 < �i 2 R for i ¼ 1; . . . ; p and set e ¼ ð�1; . . . ; �pÞ. A point �x 2 X is an e-efficient solu-
tion of Problem (1) if there is no other x 2 X such that ziðxÞP zið�xÞ þ �i for all i ¼ 1; . . . ; p and zjðxÞ > zjð�xÞ þ �j for at least one j.

Definition 2.3 (See for instance [23]). A point �x 2 X is a weakly efficient solution of Problem (1) if there is no other x 2 X such
that ziðxÞ > zið�xÞ for all i ¼ 1; . . . ; p.

It must be noticed that the notions of ‘‘efficient solutions’’, ‘‘e-efficient solutions’’, and ‘‘weakly efficient solutions’’
are usually used in the decision space, and their images in the objective space are called ‘‘nondominated solutions’’,
‘‘e-nondominated solutions’’, and ‘‘weakly non-dominated solutions’’, respectively. Although some authors use the
expression ‘‘nondominated solution’’ instead of ‘‘efficient solution’’ [9,10], in the current research we distinguish
between them. Therefore, we use the notions of ‘‘efficient’’ and ‘‘nondominated’’ for the decision space and the
objective space, respectively. Also, we denote the set of all nondominated solutions of Problem (1) by YN ¼ fZðxÞ 2
Y : xis an efficient solution of Problemð1Þg.

Definition 2.4 (See for instance [23]). The set YN is called externally stable if for each ZðxÞ 2 Y n YN there exists Zð�xÞ 2 YN such
that zið�xÞP ziðxÞ for all i ¼ 1; . . . ; p and zjð�xÞ > zjðxÞ for at least one j.

Lemma 2.1. If Y is a compact set, then YN is externally stable.

Proof. The proof is a straightforward result of Theorem 2.21 of [23]. h

Moreover, a straightforward result of Lemma 2.1 is as follows:
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