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a b s t r a c t

Radial basis function method is an effective tool for solving differential equations in engi-
neering and sciences. Many radial basis functions contain a shape parameter c which is
directly connected to the accuracy of the method. Rippa [1] proposed an algorithm for
selecting good value of shape parameter c in RBF-interpolation. Based on this idea, we
extended the proposed algorithm for selecting a good value of shape parameter c in solving
time-dependent partial differential equations.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Radial basis function method is an efficient technique for solving multidimensional problems in engineering and sciences.
Kansa was the first to use RBF for solving partial differential equations [2,3]. The RBF approximation technique is truly mesh-
less and is based on collocation in a set of scattered nodes. In the last two decades a number of researchers have developed
various meshless methods using RBF and have recently been used for solving partial differential equations in engineering
and sciences. Particular examples include convection–diffusion problems [4–8], elliptic problems [9–13], Poisson problems
[14–17], potential problems [18,19], financial mathematics [20–23]. Many other successful application based on radial basis
function method can be found in mathematics, engineering and physics journals. For examples application of RBF approx-
imation method to Burgers equation [24–29], Korteweg–de Vries equation [30–33], RLW equation [34,35], Kuramoto–Siva-
shinsky equation [36,37], Coupled Korteweg–de Vries equations [38–41], etc.

Most of the RBFs used to approximate the solution of partial differential equation contain a shape parameter c which
must be specified by the user. This random selection of c is a disadvantage. A number of papers have been written on choos-
ing optimal value of RBFs shape parameter. For example Hardy [42] suggested the use of shape parameter c ¼ 0:815d, where
d ¼ 1=N

PN
i¼1di and di is the distance from the data point xi to its nearest neighbor. Franke [43] suggested to use

c ¼ 1:25D=
ffiffiffiffi
N
p

where D is the diameter of the minimal circle enclosing all data points. Rippa [1] proposed an algorithm
for choosing an optimal value of RBFs shape parameter. G. E Fasshauer [44] suggested an algorithm for choosing optimal
value of RBF shape parameter for iterated moving least squares (AMLS) approximation and for RBF pseudo-spectral (PS)
methods for the solution of partial differential equations. Recently Michael Scheuerer [45] proposed another procedure
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for selecting good value of c in RBF-interpolation. More recently Victor Bayona, et al. [46] proposed an algorithm for selecting
an optimal value of multiquadric shape parameter c in RBF-FD method.

In this paper, we extended Rippa’s [1] algorithm for selecting good values of multiquadric shape parameter c in solving
time-dependent partial differential equations using radial basis functions.

2. RBF approximation method for PDEs

Consider a spatial domain X and an operator L acting on a smooth function on X. Suppose that the operator L always acts
with respect to the spatial variable even when time variable t is present. On a time domain ½0; T�, we look for a scalar function
u : X� ½0; T��!R, satisfying the time dependent partial differential equation

@uðx; tÞ
@t

þ Luðx; tÞ ¼ f ðx; tÞ; x 2 X; ð1Þ

along with the boundary and initial conditions

Buðx; tÞ ¼ gðx; tÞ; x 2 @X; ð2Þ

uðx; tÞ ¼ u0ðxÞ; x 2 X: ð3Þ

The RBF approximation to the solution uðx; tÞ of Eq. (1) is given as

unðxÞ ¼
XN

j¼1

kn
j wðkx� xjkÞ; x 2 X; ð4Þ

where uðx; tnÞ is denoted by unðxÞ. The grid points in the time interval ½0; T� are labeled as
tn ¼ ndt; dt ¼ 1=M;n ¼ 0;1;2; . . . ; T �M; dt is the time step size, wðkx� xjkÞ is a radial basis function, and k � k is Euclidian
norm. Eq. (4) can be written in the matrix–vector form as

un ¼ Akn: ð5Þ

The entries of the matrix A are Aij ¼ wðkxi � xjkÞ, and k ¼ ½k1; k2; . . . ; kN� is the expansion coefficient vector. Applying h-
weighted scheme to (1) we get

1
dt
½unþ1ðxÞ � unðxÞ� þ hLunþ1ðxÞ þ ð1� hÞLunðxÞ ¼ f ðx; tnþ1Þ: ð6Þ

Using Eq. (4) in Eq. (1) we can write

1
dt

XN

j¼1

knþ1
j wðkx� xjkÞðxÞ �

XN

j¼1

kn
j wðkx� xjkÞðxÞ

" #
þ h

XN

j¼1

knþ1
j Lwðkx� xjkÞðxÞ

" #
þ ð1� hÞ

XN

j¼1

kn
j Lwðkx� xjkÞðxÞ

" #

¼ f ðx; tnþ1Þ ð7Þ

and from Eq. (2) we have

XN

j¼1

knþ1
j Bwðkx� xjkÞðxÞ ¼ gðx; tnþ1Þ: ð8Þ

The above system of equations can be written in matrix–vector form as

Gknþ1 ¼ bnþ1
; ð9Þ

where

G ¼
wðkx� xjkÞ þ dthLwðkx� xjkÞ; j ¼ 1; . . . ;N; x 2 I

Bwðkx� xjkÞ; j ¼ 1; . . . ;N;x 2 @X

� �
;

bnþ1 ¼ unðxÞ � dtð1� hÞLunðxÞ þ f ðx; tnþ1Þ;x 2 I

gðx; tnþ1Þ; x 2 @X

" #
:

It should be noted that G is N � N matrix, bnþ1
; knþ1 are N � 1 vectors respectively. If the operator L is not linear we can lin-

earize the nonlinear terms involved in G. The values of kn at any time level n can be obtained from Eq. (9), and then RBF
approximate solution from Eq. (5). We are using h ¼ 1=2 in all our computations.
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