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a b s t r a c t

Nonlinear bending of strain gradient elastic thin beams is studied adopting Bernoulli–Euler
principle. Simple nonlinear strain gradient elastic theory with surface energy is employed.
In fact linear constitutive relations for strain gradient elastic theory with nonlinear strains
are adopted. The governing beam equations with its boundary conditions are derived
through a variational method. New terms are considered, already introduced for linear
cases, indicating the importance of the cross-section area, in addition to moment of inertia
in bending of thin beams. Those terms strongly increase the stiffness of the thin beam. The
non-linear theory is applied to buckling problems of thin beams, especially in the study of
the postbuckling behaviour.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Higher order gradient and non-local elasticity theories proposed by Mindlin [1], Kroener [2] and Eringen [3], have been
revisited by Aifantis [4] for solving boundary value problems, introducing the influence of the microstructure. Ru [5], pro-
posed a simple approach to solve boundary value problems. Further applications to thin beams, thin films, micro-electrome-
chanical systems and nano-electromechanical systems have been presented by Park and Gao [6] and Yang et al. [7].

Further applications in plasticity and dislocation dynamics may be found in [8,4], Fleck et al. [9–11]. Experimental evi-
dence indicating the increase of the beam stiffness with the decrease of the thickness of the thin beam has been reported
by Kakunai et al. [12] and Lam et al. [13]. Applications of nonlinear bending theory to thin plates have also been presented
[14,15].

In the present work the nonlinear bending Bernoulli–Euler theory will be discussed into the context of a simplified strain
gradient elasticity theory, where new terms, depending not only on the moment of inertia of the cross-section but also on the
area of the cross-section are introduced. Those terms highly increase the stiffness of the beam especially when the beam is
quite thin. Terms of the same type have been introduced by Yang et al. [7] and their theory has been applied to various bend-
ing problems [13,6,16]. Nevertheless, that couple stress theory, based upon an ad hoc assumption of zero double moments,
does not include a substantial part of the strain gradient theory that is the increase of the higher order derivatives in the
governing equilibrium equations. Those terms are necessary for the development of boundary layers which are characteristic
of the strain gradient elasticity applications. It is pointed out that all the already presented strain gradient beam theories
may be considered as ad hoc theories, since there are missing terms that their absence from the strain energy density
may not be justified.
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Lazopoulos and Lazopoulos [17] has proposed a bending theory including all the strain gradient terms of the Euler–Ber-
noulli strain. In fact those terms yield equilibrium equations depending not only upon the moment of inertia of the beam
cross-section, as in the conventional beam theory, but also upon the area of the cross-section, that is quite important espe-
cially for thin beams. In the present work the strain gradient beam theory [17] has been extended just to include non-linear
geometrical deformations. Indeed, non-linear curvature is employed just to introduce the geometrical non-linearities in the
beam bending problem. With the help of straight forward perturbation expansions [18], the higher order bending problem
has been described. The present non-linear expansion has applied to the non-linear beam buckling problem where the post-
critical behaviour was studied. Application for the buckling problem is presented demonstrating the difference of the present
theory from the conventional case.

2. Bending model of a strain gradient nonlinear elastic beam

A geometrically nonlinear version of Mindlin’s elastic theory with microstructure is proposed. Following the practice from
the conventional elasticity where Saint Venant’s strain energy densities are employed for various geometrically non-linear
problems, such as buckling problems [19], a widely used micro-elasticity theory equipped with two additional constitutive
coefficients, apart from the Lame constants is adopted. The additional parameters are the bulk length g and the surface
length lk.

Indeed the strain energy density function, for the present case, is expressed by,

W ¼ 1
2

kemmenn þ Gemnenm þ g2 1
2

kekmmeknn þ Gekmneknm

� �
þ lk

1
2

kðekmmenn þ emmeknnÞ þ Gðekmnenm þ emneknmÞ
� �

; ð1Þ

where eij denotes the nonlinear Green strain tensor E ¼ 1
2 ðF

T F � IÞ where F stands for the deformation gradient, and eijk the
infinitesimal strain gradient respectively, with

eijk ¼ eikj ¼ @ iekj; ð2Þ

and ui = ui(xk), the infinitesimal displacement field.
The constitutive Kirchhoff’s stresses are defined by the relations,

sij ¼
@W
@eij
¼ kekkdij þ 2Geij þ lkðkeknndij þ 2GekijÞ; ð3Þ

and the Kirchhoff’s double-stresses by,

lijk ¼
@W
@eijk

¼ g2ðkeinndjk þ 2GeijkÞ þ liðkenndjk þ 2GejkÞ: ð4Þ

The x-axis denotes the axis of the beam, whereas the y axis indicates the deflection axis, see Fig. 1.
The elastic line lies on the x–y plane. Considering Bernoulli–Euler principle, strain of the beam is defined by,

exx ¼ �yk; ð5Þ

with k denoting the curvature of the elastic line.
For the formulation of the present problem we need the Kirchhoff stress

sxx ¼
@W
@exx

¼ Eexx þ lxEexxx; ð6Þ

where E is the elastic Young’s modulus and the Kirchhoff double-stresses

lxxx ¼ g2Eexxx þ lxEexx; ð7Þ

lyxx ¼ g2Eeyxx; ð8Þ

with the double-strains,

exxx ¼ �y
@k
@x

and eyxx ¼ �k: ð9Þ

Fig. 1. Beam in x, y, z-axis.
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