
A method for analysis of linear dynamic systems driven by
stationary non-Gaussian noise with applications to
turbulence-induced random vibration

M. Grigoriu a, R.V. Field Jr. b,⇑,1

a Cornell University, Ithaca, NY 14853, USA
b Sandia National Laboratories, Albuquerque, NM 87185-0346, USA

a r t i c l e i n f o

Article history:
Received 1 August 2012
Received in revised form 7 March 2013
Accepted 31 May 2013
Available online 4 July 2013

Keywords:
Non-Gaussian models
Random vibration
Stochastic processes
Turbulence

a b s t r a c t

A method is developed for approximating the properties of the state of a linear dynamic
system driven by a broad class of non-Gaussian noise, namely, by polynomials of filtered
Gaussian processes. The method involves four steps. First, the mean and correlation func-
tions of the state of the system are calculated from those of the input noise. Second, higher
order moments of the state are calculated based on Itô’s formula for continuous semimar-
tingales. It is shown that equations governing these moments are closed, so that moment of
any order of the state can be calculated exactly. Third, a conceptually simple technique,
which resembles the Galerkin method for solving differential equations, is proposed for
constructing approximations for the marginal distribution of the state from its moments.
Fourth, translation models are calibrated to representations of the marginal distributions
of the state as well as its second moment properties. The resulting models can then be uti-
lized to estimate properties of the state, such as the mean rate at which the state exits a
safe set. The implementation of the proposed method is demonstrated by numerous exam-
ples, including the turbulence-induced random vibration of a flexible plate.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Classical linear random vibration theory provides equations for calculating the first two moments of the state XðtÞ of a
linear system subjected to input or driving noise characterized by its first two moments. The theory provides no information
beyond the second moment properties of XðtÞ unless the noise is Gaussian, in which case the state XðtÞ is a Gaussian process.
There are no efficient methods for calculating properties of XðtÞ, and functionals of this process, for the general case of non-
Gaussian driving noise.

This study develops a practical and efficient method for constructing approximate representations for the state XðtÞ of a
linear dynamic system driven by a class of non-Gaussian noise that can be used to calculate properties or functionals of XðtÞ.
Developments are based on linear random vibration [1, Chapter 5], Itô’s formula for continuous semimartingales [2, Sec-
tion 4.6] an elementary solution for the problem of moments [3], and translation models XTðtÞ for XðtÞ [4, Section 3.1.1].
Herein, we consider the driving noise to be from the class of non-Gaussian processes defined by polynomials of filtered
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Gaussian processes [5,6]. The Wiener homogeneous chaos [7,8] is a subset of this class of non-Gaussian process, which has
been used extensively in applications (see, for example, [9–12]).

In previous work by the first author [6], the objective was to calculate the mean upcrossing rate of level x for scalar pro-
cess XðtÞ driven by a polynomial of a Gaussian process. Hermite approximations were developed for the joint density of
ðX;dX=dtÞ, and the approximations were used to find the mean upcrossing rate of level x. In the current study, the objective
is to estimate the probability law of XðtÞ, and the development is not limited to scalar-valued processes. It is assumed herein
that XðtÞ can be approximated by a translation process, so that the marginal distribution of XðtÞ and its correlation function
are needed. The construction of the marginal distribution is as in [6], generalized for the case of vector-valued processes. The
construction of the correlation function for the input involves novel aspects of linear random vibration. Translation models
are very flexible and have been used in a wide variety of modeling applications, including the dynamic response of a micro-
electrical–mechanical system (MEMS) switch to random excitation [13], the seismic analysis of civil engineering structures
[14], the material properties of foams [15] and for representing aggregates in concrete [16]. Additional applications include
wind pressure fluctuations on bluff bodies [17], the response of geometrically nonlinear structures [18], the description of
irregular masonry walls [19], and damage in glass plates [20].

Numerous examples are used to illustrate the proposed methodology. One of the examples demonstrates that the method
can accurately predict the mean upcrossing rate for the state of a linear system driven by the square of an Ornstein–Uhlen-
beck process. To demonstrate the method for a complex engineering application, the vibration response of a flexible plate
subjected to turbulent flow is also presented. For this example, the random pressure fluctuations applied to the plate surface
are proportional to the square of the velocity field, which is assumed to be Gaussian. Hence the applied pressure field is non-
Gaussian.

The outline of the paper is as follows. In Section 2, we calculate correlation functions for both the input to linear systems
and the state of these systems. Itô’s formula is used subsequently to find higher order moments for the state of linear sys-
tems subjected to polynomials of filtered Gaussian processes. Translation models are constructed for the state of these sys-
tems in Section 3, and the use of the method to approximate the random vibration response of a flat plate subjected to
turbulent flow is discussed in Section 4.

2. Correlation function and moments

Let XðtÞ be an Rd-valued stochastic process defined by the following linear differential equation

_XðtÞ ¼ aðtÞXðtÞ þ bðtÞZðtÞ; t P 0; ð1Þ

where aðtÞ and bðtÞ are d� d and d� d0 matrices with real-valued, time-dependent entries, ZðtÞ denotes an Rd0-valued input
process, and Xð0Þ is the initial state specified by its mean vector l0 ¼ E½Xð0Þ� and covariance matrix, c0 ¼ E½ðXð0Þ�
l0Þ ðXð0Þ � l0Þ

0�. Vector _XðtÞ has coordinates _XkðtÞ ¼ dXkðtÞ=dt, k ¼ 1; . . . ; d. It is assumed that input ZðtÞ is a weakly station-
ary process with mean lZ ¼ E½ZðtÞ� and covariance function cZðsÞ ¼ E½ðZðt þ sÞ � lZÞ ðZðt þ sÞ � lZÞ

0�.
In Section 2.1, we present results from linear random vibration that describe the second-moment properties of XðtÞ de-

fined by Eq. (1). Assuming the driving noise ZðtÞ is defined as a polynomial of a filtered Gaussian process, the second-moment
properties of ZðtÞ are derived in Section 2.2. The equations for higher order moments of XðtÞ are developed in Section 2.3 for
this class of input.

2.1. State second moment properties

Our objective in this section is to derive equations describing the time evolution of lðtÞ ¼ E½XðtÞ� and
cðt; sÞ ¼ Cov½XðtÞ;XðsÞ�, the mean and covariance of state XðtÞ described by Eq. (1). First, the expectation of Eq. (1) gives

_lðtÞ ¼ aðtÞlðtÞ þ bðtÞlZ; t P 0; ð2Þ

with initial condition lð0Þ ¼ l0. The difference between Eqs. (1) and (2) shows that the centered process ~XðtÞ ¼ XðtÞ � lðtÞ
satisfies the equation

_~XðtÞ ¼ aðtÞ ~XðtÞ þ bðtÞ ~ZðtÞ; t P 0; ð3Þ

where ~ZðtÞ ¼ ZðtÞ � lZ;E½~Xð0Þ� ¼ 0, and E½~Xð0Þ ~Xð0Þ0� ¼ c0. The centered process has zero mean and E½~XðtÞ ~XðsÞ0� ¼
Cov½XðtÞ;XðsÞ� ¼ cðt; sÞ.

The solution to Eq. (3) is [21, Section 4.2]

~XðtÞ ¼ hðt;0Þ ~Xð0Þ þ
Z t

0
hðt; sÞbðsÞ ~ZðsÞds; t P 0; ð4Þ

where the d� d matrix hðt; sÞ is a system property satisfying the differential equation @
@t hðt; sÞ ¼ aðtÞhðt; sÞ, t P s, with hðs; sÞ

equal to the identity matrix 8s P 0. For t > s, we have
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