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a b s t r a c t

In the present paper, the Cauchy problem for the Laplace equation with nonhomogeneous
Neumann data in an infinite ‘‘strip’’ domain is considered. This problem is severely ill-
posed, i.e., the solution does not depend continuously on the data. A conditional stability
result is given. A new a posteriori Fourier method for solving this problem is proposed.
The corresponding error estimate between the exact solution and its regularization
approximate solution is also proved. Numerical examples show the effectiveness of the
method and the comparison of numerical effect between the a posteriori and the a priori
Fourier method are also taken into account.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Consider the following Cauchy problem for the Laplace equation defined on the ‘‘strip’’ domain in Rnþ1:

Duðx; yÞ ¼ 0; x 2 ð0;1Þ; y 2 Rn; n P 1;
uð0; yÞ ¼ uðyÞ; y 2 Rn;

uxð0; yÞ ¼ wðyÞ; y 2 Rn;

8><>: ð1:1Þ

where D ¼ @2

@x2 þ
Pn

j¼1
@2

@y2
j

is a ðnþ 1Þ-dimensional Laplacian operator.

This problem arises in many practical applications such as geophysics [1,2], non-destructive evaluation technique [3–6],
cardiology [7], and etc. In the Hadamard’s famous paper [8], this problem is firstly introduced as a classic example of ill-
posed problems, which shows that any small change of the data may cause dramatically large errors in the solution. It is this
ill-posedness that engenders peculiar problems in the numerical approximation and interpretation of solutions. If we only
consider the solutions corresponding to the exact data, then the continuous dependence on the data can be recovered when
some additional a priori bound on the unknown solution is imposed, this just is the so-called conditional stability. For this
topic there have been many results, e.g. [9,4] and the references therein. However, the conditional stability cannot ensure the
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stability of numerical computation with noisy data which is usually obtained by measurement. Therefore, some effective
regularization methods for solving this problem are necessary to be used to construct a stable solution. There also have been
many papers devoted to this subject, e.g. the quasi-reversibility method [10–13], the Tikhonov regularization method [1,14],
the variational method [15], the moment method [16–18], the wavelet method [19,20], the Fourier method [21], and etc. It’s
worth noting that most of the above papers consider a priori choice rule of the regularization parameter, which usually de-
pends on both the a priori bound and the noise level. In general, the a priori bound cannot be known exactly in practice, and
working with a wrong a priori bound may lead to a bad regularization solution.

Due to the linearity, the problem (1.1) can be divided into two problems with only one nonhomogeneous Dirichlet or
Neumann data, respectively:

Dvðx; yÞ ¼ 0; x 2 ð0;1Þ; y 2 Rn; n P 1;
vð0; yÞ ¼ uðyÞ; y 2 Rn;

vxð0; yÞ ¼ 0; y 2 Rn;

8><>: ð1:2Þ

and

Dwðx; yÞ ¼ 0; x 2 ð0;1Þ; y 2 Rn; n P 1;
wð0; yÞ ¼ 0; y 2 Rn;

wxð0; yÞ ¼ wðyÞ; y 2 Rn:

8><>: ð1:3Þ

It is obvious that u ¼ v þw just is the solution of problem (1.1).
For the ill-posed problem (1.2), there have been many results, such as [21,20,19,22] and the reference therein.
Problem (1.3) is also severely ill-posed [2,23]. However, to our knowledge, there are few papers devoted to the error esti-

mate of regularization methods except for [23] in which the methods of generalized Tikhonov regularization and generalized
singular value decomposition are proposed. In addition, as the special case of Helmholtz equation, [24] has considered the a
priori Fourier method for solving problem (1.3).

In this paper we only consider a new a posteriori Fourier method for solving problem (1.3). The advantage of the a pos-
teriori method is that we do not need to know the smoothness and the a priori bound of unknown solution, in fact, they can-
not be known exactly in practice. Note that the analysis of convergence rate for any a posteriori method can be given only
under some assumptions on the exact solution, however, it is too hard to obtain convergence analysis for problem (1.3) by
using standard information, such as the a priori bound given by the norm in L2ðRnÞ or HpðRnÞ. In order to overcome this dif-
ficulty, a novel a priori bound is introduced in Section 2, a conditional stability result is also given, meanwhile, the a posteriori
choice rule of the regularization parameter and the corresponding error estimate between the exact solution and its regu-
larization approximation are also provided in this section. In Section 3, some numerical examples are given, which show the
effectiveness of the method. The comparison of numerical effect between the a posteriori and the a priori Fourier methods is
also taken into account in this section. The paper ends with a brief conclusion in Section 4.

2. The conditional stability and the a posteriori Fourier regularization for solving problem (1.3)

It is easy to know as in [24], the solution of problem (1.3) is given by

ŵðx; nÞ ¼ sinhðxjnjÞ
jnj ŵðnÞ; ð2:1Þ

or equivalently

wðx; yÞ ¼ 1ffiffiffiffiffiffiffi
2p
p� �n

Z
Rn

eiy�n sinhðxjnjÞ
jnj ŵðnÞdn; ð2:2Þ

where ŵðx; nÞ denotes the Fourier transform of function wðx; yÞ with respect to variable y 2 Rn.
Noting that the factor sinhðxjnjÞ

jnj in (2.1) and (2.2) increases exponentially as jnj ! þ1, so the problem is severely ill-posed.
In fact, in practice the Neumann data wðyÞ is given only by measurement. Assume that the exact data wðyÞ and the noisy data
wdðyÞ both belong to L2ðRÞ and satisfy the following noise level

kwð�Þ � wdð�Þk 6 d; ð2:3Þ

where k � k denotes the norm in L2ðRnÞ . This error must be amplified infinitely by the factor sinhðxjnjÞ
jnj and which leads to blow

up of integral (2.2) with the noisy data wdðyÞ.
The following a priori bound is used in [24]:

kwð1; �Þkp 6 E2; p P 0; ð2:4Þ
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