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nent 2 after repair follow geometric process repair and component 1 is given priority in use
when both components are workable. Under these assumptions, using geometric process
repair model, we consider a replacement policy N under which the system is replaced
when the number of failures of component 1 reaches N. Our purpose is to determine an
optimal replacement policy N* such that the average cost rate (i.e. the long-run average
cost per unit time) of the system is minimized. The explicit expression for the average cost
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Priority rate of the system is derived and the corresponding optimal replacement policy N* can be
Replacement policy determined analytically or numerically. Finally, a numerical example is given to illustrate
Renewal reward theorem some theoretical results and the model applicability.

Convolution © 2010 Elsevier Inc. All rights reserved.

1. Introduction

In the earlier study of the repair-replacement problem, the repair-replacement models are mainly concentrated on the
study of the model for a simple repairable system (i.e. a one-component repairable system with one repairman). Moreover, it
is usually assumed that the system after repair is “as good as new”. This is a perfect repair model. However, this assumption
is not always true. In practice, most repairable systems are deteriorative because of the ageing effect and the accumulative
wear. Barlow and Hunter [1] first presented a minimal repair model in which a system after repair has the same failure rate
and the same effective age as at the time of failure. Brown and Proschan [2], combined the perfect repair and the minimal
repair, first reported an imperfect repair model in which the repair will be perfect with probability p or minimal with prob-
ability 1 — p. Research works on the minimal repair model and the imperfect repair model include Park [3], Phelps [4], Block
et al. [5], Kijima [6], Martorell et al. [7], Jhang and Sheu [8], Sheu et al. [9], Chiang and Yuan [10], and Jiang and Ji [11].

However, for a deteriorating simple system, it seems is more reasonable to assume that the successive working times of
the system after repair will become shorter and shorter, while the consecutive repair times of the system after failure will
become longer and longer. Ultimately, it cannot work any longer, neither can it be repaired. For such a stochastic phenom-
enon, Lam [12,13] first introduced a geometric process repair model to approach it, and under this model, he studied two
kinds of replacement policy for simple repairable systems, one based on the working age T of the systems and the other
based on the failure number N of the system. The explicit expressions of the average cost rate under these two kinds of policy
are respectively calculated, and the corresponding optimal replacement policies T* and N* can be found analytically or
numerically. Under some mild conditions, he also proved that the optimal policy N* is better than the optimal policy T*.
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Since, the geometric process is a special monotone process, Stadje and Zuckerman [14] introduced a general monotone pro-
cess repair model to generalize Lam’s work. Zhang [15] combined the two replacement policies used by Lam [12,13] and pro-
posed a bivariate replacement policy (T,N) under which the system is replaced at the working age T or at the time of the Nth
failure, whichever occurs first. Under the same conditions in Lam [12,13], he showed that the optimal policy (T,N)* is better
than the optimal policies N* and T*. Other research works on the geometric process repair model include Finkelstein [16],
Stanley [17], Leung and Lee [18], Leung [19], Zhang et al. [20,21], Zhang [22-24], Wang and Zhang [25], Castro and Pérez-
Ocoén [26], Chen and Li [27] and others.

In practical application, some complex repairable systems such as series, parallel, standby and k-out-of-n: F (or G) sys-
tems and others are often installed. By applying the geometric process repair model, Zhang and Wu [28] first reported some
reliability indices of a two-component series repairable system when the operating time of component 1 follows the expo-
nential distribution while that of component 2 and the repair times of both components follow general distributions. Lam
and Zhang [29] provided a more in depth analysis of the series system studied by Zhang and Wu [28] under the assumptions
that the operating times and repair times of both components all follow the exponential distribution. Further, Zhang and
Wang [30] considered a replacement policy M = (N1,Ns,...,N) for a k-dissimilar-component series repairable system, where
N1, Ny, ..., and N are, respectively, the number of failures of component 1, component 2, ..., and component k. An optimal
replacement policy M™ = (N}, N3, ..., N;) can be determined by minimizing the average cost rate of the system. Many re-
search works for some complex repairable systems have been done by Zhang and Lam [31], Zhang et al. [32], Lam and Zhang
[33,34], Lam et al. [35] and others along this direction.

Note that the standby redundancy techniques are often used to improve the reliability, raise the availability or reduce the
cost of a system in many practical applications. Zhang [36] analyzed a two-component cold standby repairable system with
one repairman. Assume that each component after repair is not “as good as new”, and obeys a geometric process repair. Un-
der this assumption, he studied a replacement policy N based on the number of repairs of component 1. An optimal replace-
ment policy N* can be determined by maximizing the long-run expected reward per unit time. Zhang et al. [37] studied two
kinds of replacement policy for a two-component cold standby repairable system with one repairman, one based on the
working age T of component 1 under which the system is replaced when the working age of component 1 reaches T, and
the other based on the failure number N of component 1 under which the system is replaced when the failure number of
component 1 reaches N. The optimal replacement policies T* and N* are, respectively, determined by minimizing the average
cost rate of the system. They also proved that the optimal policy N* is better than the optimal policy T* for a cold standby
repairable system under some mild conditions.

Similarly, in order to improve the reliability, raise the availability or reduce the cost of a system, the techniques for pri-
ority in use or repair are also used. For example, in the operating room of a hospital, an operation must be discontinued if
only the power source is cut (i.e. the power station fails). Usually, there is a standby generator (e.g. a storage battery) which
can provide electric power when the main power station fails. Thus, the power station (regarded as the main component,
written as component 1) and the storage battery (as the cold standby component, written as component 2) form a repairable
electricity-supply system. Obviously, it is reasonable to assume that the power station has use priority due to the operating
cost of the power station is cheaper than the storage battery. Besides the electricity-supply system in a hospital, some similar
examples can be found from Lam [38]. Thus, a two-component cold standby repairable system with one repairman and pri-
ority in use or repair is often employed in practical applications. Nakagawa and Osaki [39] assumed that both working time
and repair time of the priority component follow general distributions while both working time and repair time of the non-
priority component follow exponential distributions, and the repairs are perfect. Under these assumptions, they developed
some interesting reliability indices for the system, using the Markov renewal theory. Other similar studies include those by
Osaki [40] and Buzacott [41], for generalizations.

In this paper, we apply the geometric process repair model to a two-component cold standby repairable system with
one repairman by assuming that each component after repair is not “as good as new” and follows a geometric process re-
pair, and component 1 has use priority. We consider a repair-replacement policy N based on the number of failures of
component 1 under which the system is replaced when the failure number of component 1 reaches N. Our purpose is
to determine an optimal replacement policy N* such that the average cost rate of the system is minimized. The explicit
expression of the average cost rate of the system is derived and the corresponding optimal replacement policy N* can
be determined analytically or numerically. Finally, a numerical example is given to illustrate some theoretical results in-
cluded the uniqueness of the optimal replacement policy N*, the sensitivity analysis, i.e. the influence of the ratio of the
geometric process on the optimal solution, and the comparison of the optimal solutions for the model with and without
use priority in this paper.

For ease of reference, we first state the definitions of stochastic order and geometric process.

Definition 1. Given two random variables ¢ and #, ¢ is said to be stochastically larger than # or # is stochastically smaller
than ¢, if

P(¢>0a) = P(n>a) forall real o,

denoted by ¢ > 1 or 11 < &€ (see, e.g., Ross [42]). Furthermore, it is said that a stochastic process {X,,n =1,2,...} is stochas-
tically decreasing if X, > s X;+1 and stochastically increasing if X, < oXp+1 foralln=1,2,....
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