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a b s t r a c t

Using scale analysis and the method of perturbations, a theoretical description is obtained
for the steady-state non-Newtonian flow on the inner wall of the rotating horizontal cylin-
der. The Maxwell upper-convective equation is chosen to model the visco-elastic proper-
ties of the fluid. In the general case, the derived governing equations can be solved only
numerically. However, since the polymeric solutes used in roto-molding and coating tech-
nologies exhibit the relatively weak elastic properties, the Deborah number for such flows
is rather small (De < 1). Exploiting this fact, the perturbation method is applied for simpli-
fication of the model. As a result, the first order non-linear differential equation for the
thickness of the fluid film is derived. An approximate analytical solution of this equation
is found. The accuracy of analytical solution is verified by the direct numerical solution
of the derived equation. The obtained equation is rather complex and contains several crit-
ical points. These points are classified by the analysis of the corresponding autonomous
system. The type and location of these critical points are accounted for during numerical
solution of the equation. Using the obtained solutions, the criteria which guarantee the sta-
ble steady-state flow of the liquid polymer and the uniform final thickness of the coating
film are determined. The bounds for the different flow regimes and principal controlling
parameters are identified.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The problem of rotational flow on the inner and/or outer wall of a hollow horizontal cylinder has been of interest for
many years due to its wide range of applications in industry [1,2]. Moffatt [3] was the first to derive the condition of the
maximal supportable load for a Newtonian liquid. Later Preziosi and Joseph [4] presented the same condition in another
form and named it a run-off condition for coating and rimming flows. The possible instability of the liquid film on a cylin-
drical surface is one the most challenging fundamental aspects of this problem. A highly unstable nature of rimming New-
tonian flow was discussed in a number of recent publications [5–10]. For example, Benilov and O’Brien [5] and Benilov [6]
examined the stability of solutions, accounting for inertia and surface tension, and concluded that including these higher
order corrections to the governing equation for the liquid film thickness may cause the instability of the steady-state solu-
tion. They proved that inertia always causes instability, but viscosity can make the characteristic time of growth large en-
ough to effectively stabilize the film. Benilov et al. [7,8] have shown that the system admits strongly unstable solutions,
which develop singularities in a finite time.

Although the aforementioned investigations highlight the main characteristics of the rimming flow, given its importance,
not enough has been done to show the effect of non-Newtonian properties on such flow. Only a few attempts have been

0307-904X/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.apm.2010.10.014

⇑ Corresponding author.
E-mail address: sfomin@csuchico.edu (S. Fomin).

Applied Mathematical Modelling 35 (2011) 1846–1860

Contents lists available at ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier .com/locate /apm

http://dx.doi.org/10.1016/j.apm.2010.10.014
mailto:sfomin@csuchico.edu
http://dx.doi.org/10.1016/j.apm.2010.10.014
http://www.sciencedirect.com/science/journal/0307904X
http://www.elsevier.com/locate/apm


made, in which power-law model [11], Carrea–Yasuda model [12,13], Ellis model [14], and Bingham model [15] were used.
The visco-elastic model was studied in [16] and the corresponding governing equations were solved numerically.

Most polymeric solutes used in rotational coating are non-Newtonian liquids, which exhibit moderate elastic behavior,
which is characterized by the Deborah number De = kX, where X is the characteristic angular velocity of the rotating cylin-
der and k is a typical time of relaxation for liquid polymers. The values of the Deborah number are well documented [16–18]
and normally stay in the range from 10�2 to 10. Our main concern is the rotational molding of highly viscous polymers [1,2]
that exhibit non-Newtonian visco-elastic behavior. We are particularly interested in eliminating possible instabilities and
providing the criteria for the steady-state flow in order to obtain a continuous and smooth coating film on the wall of the
horizontal cylinder. In the steady-state case, the equation that describes the distribution of the liquid film along the wall
of the rotating cylinder is a non-linear ordinary differential equation, which in general may have an infinite number of solu-
tions. In the present study of the rimming flow of the viscoelastic non-Newtonian fluid the governing equation is solved
numerically and analytically.

2. System model and scale analysis

A schematic sketch of the rimming flow is illustrated in Fig. 1. The cylinder of radius r0 is rotating in the counterclockwise
direction with constant rate X. The horizontal cylinder is assumed to be of infinite length and is open. A highly viscous liquid

Nomenclature

De Deborah number
CB inverse to the Bond number
e rate of deformation tensor
er, eh radial and azimuthal axes vectors, respectively
g gravity vector
H0 mean thickness of the liquid layer
h thickness of the liquid layer
h0 characteristic thickness of the liquid layer
n normal to the free surface
p pressure
q mass flux
r radial coordinate
ro radius of the cylinder
R non-dimensional radial coordinate = (1 � r)/d
Re Reynolds number as defined by equation
t time
v fluid velocity
vr, vh radial and azimuthal components of the fluid velocity, respectively
W total mass of the liquid

Greek symbols
d ratio of the characteristic liquid layer thickness and radius of the cylinder (defined by Eq. (5))
j mean curvature of the free surface
k parameter in stress–strain constitutive equation (relaxation time)
l parameter in stress–strain constitutive equation (dynamic viscosity)
h azimuthal coordinate
q liquid density
r surface tension
s deviator of the stress tensor
shR, sRR, shh components of s
X angular velocity of the cylinder

Superscripts
� dimensional quantities
0, 1 zero-order and first-order approximation, respectively

Subscripts
0 characteristic quantity
h, r azimuthal and radial components, respectively
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