
Scheduling linearly shortening jobs under precedence constraints

Stanisław Gawiejnowicz a,⇑, Tsung-Chyan Lai b, Ming-Huang Chiang b

a Adam Mickiewicz University, Faculty of Mathematics and Computer Science, Umultowska 87, 61-614 Poznań, Poland
b National Taiwan University, College of Management #2, Roosevelt Road 85, Section 4, Taipei 106, Taiwan

a r t i c l e i n f o

Article history:
Received 26 April 2009
Received in revised form 27 September
2010
Accepted 12 November 2010
Available online 19 November 2010

Keywords:
Time-dependent scheduling
Shortening jobs
Precedence constraints
Polynomial algorithms

a b s t r a c t

We consider the problem of scheduling a set of dependent jobs on a single machine with
the maximum completion time criterion. The processing time of each job is variable and
decreases linearly with respect to the starting time of the job. Applying a uniform approach
based on the calculation of ratios of expressions that describe total processing times of
chains of jobs, we show basic properties of the problem. On the basis of these properties,
we prove that if precedence constraints among jobs are in the form of a set of chains, a tree,
a forest or a series–parallel digraph, the problem can be solved in O(n logn) time, where n
denotes the number of the jobs.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

In the classic scheduling theory (Conway et al. [1]), one assumes that job processing times are known in advance fixed
values. The assumption, however, strongly restricts the applicability of the theory, since in many production environments
job processing times are variable. For example, the processing times of jobs increase (decrease) if the jobs are executed on
machines with decreasing (increasing) efficiency, jobs processed by robots or automated guided vehicles need variable
amount of time to execute in dependence of the machines processing speed etc.

The phenomenon of variability of job processing times is modelled in scheduling literature in a few different ways. For
example, the processing time of a job can be a function of a continuous resource (Gawiejnowicz [2]), the job waiting time
(Sriskandarajah and Goyal [3]), the number of already executed jobs (Gawiejnowicz [4]) or the position of the job in schedule
(Bachman and Janiak [5], Biskup [6], Wu and Lee [7]).

Scheduling problems with variable job processing times can also be considered in the framework of time-dependent sched-
uling (Alidaee and Womer [8], Cheng et al. [9], Gawiejnowicz [10]), a rapidly developing branch of modern scheduling theory.
In time-dependent scheduling the processing time of a job depends on the starting time of the job. This assumption consid-
erably extends the area of applicability of scheduling theory, since numerous real-life problems can be modelled as time-
dependent scheduling problems. For example, the problems of repayment of multiple loans (Gupta et al. [11]), producing
ingots in a steel mill (Kunnathur and Gupta [12]), recognizing aerial threats (Ho et al. [13]), maintenance assignments (Mos-
heiov [14]), assignment of divisible loads in a multiprocessor environment (Drozdowski [15]), fire fighting (Rachaniotis and
Pappis [16]) and scheduling derusting operations (Gawiejnowicz et al. [17]) can be formulated as time-dependent schedul-
ing problems.

In general, the functions that describe job processing times in a time-dependent scheduling problem can be arbitrary non-
negative functions of time. In time-dependent scheduling literature, however, most intensively studied are non-decreasing

0307-904X/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.apm.2010.11.012

⇑ Corresponding author. Tel.: +48 61 829 5334; fax: +48 61 829 5315.
E-mail addresses: stgawiej@amu.edu.pl (S. Gawiejnowicz), tclai@ccms.ntu.edu.tw (T.-C. Lai), cmh@ccms.ntu.edu.tw (M.-H. Chiang).

Applied Mathematical Modelling 35 (2011) 2005–2015

Contents lists available at ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier .com/locate /apm

http://dx.doi.org/10.1016/j.apm.2010.11.012
mailto:stgawiej@amu.edu.pl
mailto:tclai@ccms.ntu.edu.tw
mailto:cmh@ccms.ntu.edu.tw
http://dx.doi.org/10.1016/j.apm.2010.11.012
http://www.sciencedirect.com/science/journal/0307904X
http://www.elsevier.com/locate/apm


and non-increasing functions. If the functions are non-decreasing, we deal with deteriorating processing times of jobs; if the
functions are non-increasing, we consider shortening job processing times.

Though the huge majority of time-dependent scheduling literature concerns the case when jobs are independent (i.e. when
job precedence constraints are empty), there are known some results concern dependent deteriorating jobs. Tanaev et al. [18],
using priority-generating functions, have formulated O(n logn) algorithms for a set of linearly deteriorating jobs executed on a
single machine and job precedence constraints in the form of a tree or a series–parallel graph. A similar result for series–
parallel precedence constraints was obtained by Wang et al. [19]. For a detailed discussion of scheduling deteriorating jobs
with different forms of polynomially solvable job precedence constraints, we refer the reader to monograph [10, Chapter 13].

Time-dependent scheduling with dependent shortening jobs was considered by Gordon et al. [20]. Applying priority-
generating functions, the authors proved polynomial solvability of series–parallel precedence constraints.

Throughout this paper, we consider the following time-dependent scheduling problem. There is given a set J of jobs
J1, J2, . . . , Jn to be processed on a single machine. The machine is available for processing at time t0 P 0. We assume that
job processing times are shortening, i.e. the processing time of job Jj is equal to pj = aj � bjSj, where Sj is the starting time
of the job, the job basic processing time aj > 0 and the job deterioration rate 0 < bj < 1 for 1 6 j 6 n. We also assume that
for 1 6 j 6 n there hold inequalities

bj

Xn

i¼1

ai � aj

 !
< aj: ð1Þ

We restrict our further considerations only to schedules without idle times between jobs. This, together with inequalities (1),
causes that job processing times remain positive in all possible schedules (see Ho et al. [13] for details).

In the set J there are also defined non-empty job precedence constraints, i.e. a reflexive, antisymmetric and transitive
relation on the Cartesian product J � J . These precedence constraints can be given in the form of a set of chains, a tree,
a forest or a series–parallel digraph.

Given the set of jobs defined as above, our aim is to find such a schedule that minimizes the maximum completion time,
Cmax :¼max16j6n{Cj}, where Cj denotes the completion time of job Jj.

In this paper, applying a uniform approach other than priority-generating functions, we show that for the mentioned
forms of job precedence constraints the above problem can be solved in O(n logn) time. For each case of job precedence con-
straints, we also propose a polynomial algorithm and prove its optimality. Hence, our results complement the result by Gor-
don et al. [20], since the authors have not presented details concerning algorithms for the case of series–parallel precedence
constraints and its subcases.

The remainder of the paper is organized as follows. In Section 2, we recall some graph definitions used in the paper. In
Section 3, we present basic properties of the problem. In subsequent sections, we consider different forms of job precedence
constraints: a set of chains (Section 4), a tree or a forest (Section 5), a series–parallel digraph (Section 6). Conclusions are
given in Section 7.

2. Preliminaries

In the section, we recall some graph definitions used throughout the paper. We start with definitions concerning directed
graphs.

A directed graph (a digraph) is an ordered pair G = (V,A), where V – ; is a finite set of vertices and A # {(v1,v2) 2 V � V :
v1 – v2} is a set of arcs.

A directed path in a digraph G = (V,A) is a sequence (v1,v2, . . . ,vk) of distinct vertices from V such that (vi,vi+1) 2 A for each
1 6 i 6 k � 1. The number k is called the length of the path (v1,v2, . . . ,vk).

A directed cycle in a digraph G = (V,A) is a directed path (v1,v2, . . . ,vk) such that vk = v1. A digraph G = (V,A) is an acyclic
digraph if it contains no directed cycle.

A digraph G = (V,A) is connected if for every v1, v2 2 V there exists in G a directed path starting with v1 and ending with v2;
otherwise, it is disconnected.

A digraph G0 = (V0,A0) is called a subdigraph of a digraph G = (V,A), if V0 # V and (v1,v2) 2 A0 implies (v1,v2) 2 A.
A vertex v1 2 V of a digraph G = (V,A) is called a predecessor (successor) of a vertex v2 2 V, if there exists a directed path

from v1 to v2 (from v2 to v1). For a given digraph G = (V,A) and v 2 V, we denote the set of all predecessors and successors of v
by Pred(v) and Succ(v), respectively.

If vertices v1, v2 2 V of a digraph G = (V,A) and the directed path from v1 to v2 is of unit length, then v1 is called a direct
predecessor (successor) of v2. A vertex v 2 V of a digraph G = (V,A) that has no direct predecessor (successor) is called an ini-
tial (a terminal) vertex in the digraph. A vertex v 2 V of a digraph G = (V,A) that is neither initial nor terminal is called an
internal vertex in the digraph.

A chain (v1,v2, . . . ,vk) is a digraph G = (V,A), where V = {vi : 1 6 i 6 k} and A = {(vi,vi+1) : 1 6 i 6 k � 1}.
A special case of a chain is an independent chain.

Definition 1. A chain (v1,v2, . . . ,vk) in a digraph G = (V,A) is said to be an independent chain, if for any vi 2 Vn{v1,v2, . . . ,vk} the
vertex vi is neither predecessor nor successor of any vertex from the chain (v1,v2, . . . ,vk), or vi precedes (follows) all vertices of
the chain (v1,v2, . . . ,vk).

2006 S. Gawiejnowicz et al. / Applied Mathematical Modelling 35 (2011) 2005–2015



Download English Version:

https://daneshyari.com/en/article/1705232

Download Persian Version:

https://daneshyari.com/article/1705232

Daneshyari.com

https://daneshyari.com/en/article/1705232
https://daneshyari.com/article/1705232
https://daneshyari.com

