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a b s t r a c t

This article examines the magnetohydrodynamic (MHD) flow of non-Newtonian nanofluid
in a pipe. The temperature of the pipe is assumed to be higher than the temperature of the
fluid. In particular two temperature dependent viscosity models, have been considered.
The nonlinear partial differential equations along with the boundary conditions are first
cast into a dimensionless form and then the equations are solved by homotopy analysis
method (HAM). Explicit analytical expressions for the velocity field, the temperature distri-
bution and nano concentration have been derived analytically. The effects of various phys-
ical parameters on velocity, temperature and nano concentration are discussed by using
graphical approach.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Magnetohydrodynamic (MHD) deals with the motion of conducting fluids. The applications of MHD cover a wide
range of physical areas from liquid metals to cosmic plasmas; for instance, MHD pumps, MHD power generators, elec-
trostatic precipitation, petroleum industry, electrostatic precipitation, purification of crude oil, aerodynamics heating,
geophysics, plasma physics and fluid droplets sprays [1–6]. Moreover, non-Newtonian fluids [7–13] have been found
much important and useful for technological point of view such as multi-grade oils, liquid detergents, paints, polymer
solutions and polymer melts. Furthermore, recent advances in nanotechnology have led to the development of a new
innovative class of heat transfer called nanofluids created by dispersing nanoparticles [14]. Non-Newtonian nanofluids
are widely encountered in many industrial and technology applications, for example, melts of polymers, biological
solutions, paints, tars, asphalts and glues etc. Nanofluids appear to have the potential to significantly increase heat
transfer rates in a variety of areas such as industrial cooling applications, nuclear reactors, transportation industry,
micro-electromechanical systems, electronics and instrumentation, and biomedical applications. Nanofluid has also been
found to possess enhanced thermophysical properties such as thermal conductivity, thermal diffusively, viscosity and
convective heat transfer coefficients compared to those of base fluids like oil or water. A careful review of the literature
reveals that a very little efforts are devoted to examine the non Newtonian nanofluid. Some relevant studies on the topic
can be found from the list of Refs. [15,16].

Motivated by these facts, in the present study we have investigated the effects of MHD and variable viscosities on non-
Newtonian nanofluid in a pipe. The flow is generated by constant pressure gradient. To derive the solutions of nonlinear
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governing equations, we have used an efficient method, homotopy analysis method (HAM) [17–21], which is particularly
suitable for strongly nonlinear problems. After the introduction in Section 1, the outlines of this paper are as follows. Section
2 contains mathematical formulation. In Section 3 solutions of the problems are presented by using HAM. Convergence and
discussion are given in Sections 4 and 5 respectively. Finally Section 6 summaries the concluding remarks.

2. Formulation of the problem

The governing equations of the fluid motion are the conservation of momentum

q
dV
dt
¼ divTþ qbþ J� B; ð1Þ

where q is the density, d=dt is the material time derivative, V is the velocity field, T is the Cauchy stress tensor, J is the electric
current density, B is the total magnetic field, b ¼ �qegk, is the body force, k being the unit vector in the z-direction, and eg the
acceleration due to gravity. The fact that the fluid undergoes only isochoric motion, therefore, the law of conservation of
mass is defined by

divV ¼ 0: ð2Þ

In view of the principle of conservation of heat energy, the energy equation for nanofluid is given by

q
de
dt
¼ divQ � qcð Þp Dbru � rhþ Dt

h
rh � rh

� �
; ð3Þ

where e is specific internal energy, h is temperature, cp is specific heat, Db is Brownian diffusion coefficient, Dt is thermoph-
oretic diffusion coefficient and Q is heat flux.

According to Fourier’s law of heat transfer

Q ¼ �k gradh ð4Þ

and

divQ ¼ �kr � rhð Þ; ð5Þ

k is thermal conductivity.
Due to complexity of non-Newtonian nanofluids, there is no single model which describes all of their properties. There-

fore, several constitutive equations have been proposed which can describe all the behaviors of non-Newtonian nanofluids;
for example, stress differences, shear thinning or shear thickening, stress relaxation, elastic effects and memory effects.
Amongst the many models, there is a grade three model which is the most popular. This is particularly due to the fact that
one can reasonably explain the shear thinning/shear thickening properties even for steady and unidirectional flows. The
stress in a third grade fluid is given by

T ¼ �pIþ lA1 þ a1A2 þ a2A2
1 þ b1A3 þ b2ðA1A2 þ A2A1Þ þ b3ðtrA2

1ÞA1; ð6Þ

where l is the coefficient of viscosity, p is hydrostatic pressure, T is Cauchy stress tensor,�pI is the spherical stress due to the
constraint of incompressibility, ai ði ¼ 1;2Þ are material constants, bj ðj ¼ 1;2Þ are grade three parameters and first three
Rivlin–Ericksen kinematical tensors A1;A2 and A3 are defined by

A1 ¼ gradVð Þ þ ðgradVÞt; ð7Þ

An ¼
dAn�1

dt
þ An�1 gradVð Þ þ gradVð ÞtAn�1; for n > 1; ð8Þ

where V ¼ ½0;0;vðrÞ� denotes the velocity vector. If all the motions of the fluid are to be compatible with thermodynamics in
the sense that these motions satisfy the Clausius–Duhem inequality and if it is assumed that the specific Helmholtz free en-
ergy is a minimum when the fluid is locally at rest, then thermodynamics imposes the following constraints [22]

l P 0;a1 P 0; ja1 þ a2j 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24lb3

p
; b1 ¼ b2 ¼ 0; b3 P 0: ð9Þ

It is noted that this constitutive relation not only predicts the normal stress differences, but can also predict the ‘‘shear-
thickening’’ phenomenon (since b3 > 0) which is the increase in viscosity with increasing shear rate. In the present analysis
we assume that the fluid is thermodynamically compatible, and therefore, Eq. (6) reduces to

T ¼ �p1Iþ lþ b3ðtrA2
1Þ

h i
A1 þ a1A2 þ a2A2

1: ð10Þ
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