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a b s t r a c t

In this paper, we consider the classical mathematical model with saturation response of the
infection rate and time delay. By stability analysis we obtain sufficient conditions for the
global stability of the infection-free steady state and the permanence of the infected steady
state. Numerical simulations are carried out to explain the mathematical conclusions.
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1. Introduction

It is known that HIV (human immunodeficiency virus) has become a global problem. The human is suffering enormously
due to HIV and AIDS (acquired immunodeficiency syndrome). For example, AIDS is now the leading cause of death in Sub-
Saharan Africa. Many countries in this region have failed to bring the epidemic under control. It is said that nearly two-thirds
of the world’s HIV positive people live in Sub-Saharan Africa. So, in the last decades the infection by HIV, which caused AIDS,
has been the subject of most intense studies that encompass diverse fields of scientific research. Although major progress has
been achieved by medical and biological researchers in understanding different aspects of the virus–host interaction, the
mechanisms by which HIV causes AIDS still remain unexplained.

Mathematical models have been proven to be valuable in understanding the dynamics of HIV infection. Most of them use
ordinary (or partial) differential equations to describe different aspects of the dynamics of the host–parasite interaction [1–
5]. And these models typically consider the dynamics of the CD4+ and virus populations as well as the effects of drug therapy
[6]. There are also some models which include an intracellular delay [7–10]. Models that included delays have been intro-
duced to account for the time between viral entry into a target cell and the production of new virus particles. Recently, Song
et al. [11] have investigated the following viral model with delay:

_T ¼ s� dT þ aT 1� T
Tmax

� �
� bTV ;

_I ¼ be�msTðt � sÞVðt � sÞ � dI;
_V ¼ pI � cV ;
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where T is the number of target cells, I is the number of infected cells, V is the viral load of the virous, s represents the rate at
which new T cells are created from sources, a is the maximum proliferation rate of target cells. Tmax is the T population den-
sity at which proliferation shuts off. In model (1.1), d is death rate of the T cells, b is the infection rate constant, the term e�ms

accounts for cells that are infected at time t but die before becoming productively infected s time units later. d is the death
rate of the infective cells, p is the reproductively rate of the infected cells, and p

d is the total number of virion produced by a
productively infected cell during its lifetime, c is the clearance rate constant of virions.

Song et al. studied the effect of time delay on the stability of the endemically infected equilibrium, criteria were given to
ensure that the infected equilibrium was asymptotically stable for all delays. The conditions for the existence of orbitally
asymptotically stable periodic solutions was also established. All the results were under the case m ¼ 0 in system (1.1).

Although the rate of infection in most HIV models is bilinear in the virus V and the uninfected target cells T, actual inci-
dence rates are probably not strictly linear in each variable over the entire range of V and T. For example, a less than linear
response in V could occur due to saturation at high virus concentration, where the infectious fraction is high so that exposure
is very likely. Thus, it is reasonable for us to assume that the infection rate of modelling HIV, HBV and HCV infection in sat-
urated mass action, bTVl=ð1þ aVqÞ, where, l; q;a > 0 are constants. In this paper, we shall investigate the viral model with
saturation response of the infection rate ðl ¼ q ¼ 1Þ. The model can be written as the following form:

_T ¼ s� dT þ aT 1� T
Tmax

� �
� bTV

1þaV ;

_I ¼ be�msTðt�sÞVðt�sÞ
1þaVðt�sÞ � dI;

_V ¼ pI � cV :
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The meaning of the parameters is the same as above. We will analyze the stability of equilibria and Hopf bifurcation. And we
will show that when delay s passes through a critical value, the endemic equilibrium loses its stability and Hopf bifurcation
occurs. Since the coefficients of the corresponding characteristic equation depend on delay s, there are stability switches, and
all roots of the characteristic equation have negative real parts when s is large enough.

This paper is organized as follows. In the next section, the local and global stability of the viral-free equilibrium are stud-
ied. In Section 3, we will give the conditions for existence of the permanence at the endemic equilibrium. In Section 4, the
Hopf bifurcation at the infected equilibrium is determined. In Section 5, some numerical simulations are performed to illus-
trate the analytical results.

2. Stability of the viral-free equilibrium E1 and the infected equilibrium E2

We denote the Banach space of continuous functions u : ½�s;0� ! R3 with norm

kuk ¼ sup
�s6h60

fju1ðhÞj; ju2ðhÞj; ju3ðhÞjg

by C, where u ¼ ðu1;u2;u3Þ. Further, let

Cþ ¼ fu ¼ ðu1;u2;u3Þ 2 C : ui P 0 for all h 2 ½�s; 0�; i ¼ 1;2;3g:

The initial condition for system (1.2) is given as

TðhÞ ¼ u1ðhÞ; IðhÞ ¼ u2ðhÞ; VðhÞ ¼ u3ðhÞ; �s 6 h 6 0;

where u ¼ ðu1;u2;u3Þ.
First, we know that the possible non-negative equilibria of system (1.2) are E1ðbT ;0;0Þ and E2ðT; I;VÞ, where

bT ¼ Tmax

2a
a� dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� dÞ2 þ 4as

Tmax

s" #
;

T ¼ Tmax

2a
a� d� b

a

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� d� b

a

� �2

þ 4as
Tmax

þ 4acd
apTmaxe�ms

s24 35;
I ¼ cV

p
;

V ¼ pbe�msT � cd
acd

:

The basic reproductive number is given by

R0 ¼
pbe�msT

cd
:

In the following, we consider the locally asymptotic stability of the viral-free equilibrium E1 and the infected equilibrium E2.

Theorem 2.1. (1) If R0 < 1, then E1 is locally asymptotically stable for any time delay s P 0.
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